【題目】某校為了解七年級學(xué)生體育課足球運(yùn)球的掌握情況,隨機(jī)抽取部分七年級學(xué)生足球運(yùn)球的測試成績作為一個(gè)樣本,按A、B、C、D四個(gè)等級進(jìn)行統(tǒng)計(jì),制成了如圖所示的不完整的統(tǒng)計(jì)圖:
根據(jù)所給信息,解答以下問題:
(1)在扇形統(tǒng)計(jì)圖中,求等級C對應(yīng)的扇形圓心角的度數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)該校七年級有300名學(xué)生,請估計(jì)足球運(yùn)球測試成績達(dá)到A等級的學(xué)生有多少人?
【答案】(1)117°;補(bǔ)圖見解析;(2)30人.
【解析】
(1)先根據(jù)B等級人數(shù)及其百分比求得總?cè)藬?shù),總?cè)藬?shù)減去其他等級人數(shù)求得C等級人數(shù),繼而用360°乘以C等級人數(shù)所占比例即可得,根據(jù)以上所求結(jié)果即可補(bǔ)全圖形;
(2)總?cè)藬?shù)乘以樣本中A等級人數(shù)所占比例可得.
解:(1)∵總?cè)藬?shù)為18÷45%=40人,
∴C等級人數(shù)為40﹣(4+18+5)=13人,
則C對應(yīng)的扇形的圓心角是360°×=117°,
補(bǔ)全條形圖如下:
(2)估計(jì)足球運(yùn)球測試成績達(dá)到A級的學(xué)生有300×=30人.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】附加題:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.
求 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線l1:y=﹣x與反比例函數(shù)y=的圖象交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),已知A點(diǎn)的縱坐標(biāo)是2:
(1)求反比例函數(shù)的表達(dá)式;
(2)將直線l1:y=﹣x向上平移后的直線l2與反比例函數(shù)y=在第二象限內(nèi)交于點(diǎn)C,如果△ABC的面積為30,求平移后的直線l2的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB=8,P為線段AB上的一個(gè)動點(diǎn),分別以AP,PB為邊在AB的同側(cè)作菱形APCD和菱形PBFE,點(diǎn)P,C,E在一條直線上,∠DAP=60°.M,N分別是對角線AC,BE的中點(diǎn).當(dāng)點(diǎn)P在線段AB上移動時(shí),點(diǎn)M,N之間的距離最短為( ).
A. 2B. 2C. 2D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題發(fā)現(xiàn)
如圖1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,連接AC,BD交于點(diǎn)M.填空:
①的值為 ;
②∠AMB的度數(shù)為 .
(2)類比探究
如圖2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,連接AC交BD的延長線于點(diǎn)M.請判斷的值及∠AMB的度數(shù),并說明理由;
(3)拓展延伸
在(2)的條件下,將△OCD繞點(diǎn)O在平面內(nèi)旋轉(zhuǎn),AC,BD所在直線交于點(diǎn)M,若OD=1,OB=,請直接寫出當(dāng)點(diǎn)C與點(diǎn)M重合時(shí)AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A、B是反比例函數(shù)y=(k≠0)圖象上的兩點(diǎn),延長線段AB交y軸于點(diǎn)C,且點(diǎn)B為線段AC中點(diǎn),過點(diǎn)A作AD⊥x軸于點(diǎn)D,點(diǎn)E為線段OD的三等分點(diǎn),且OE<DE.連接AE、BE,若S△ABE=7,則k的值為( )
A.﹣12B.﹣10C.﹣9D.﹣6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一條筆直的公路上有A、B兩地,甲騎自行車從A地到B地;乙騎電動車從B地到A地,到達(dá)A地后立即按原路返回,如圖是甲、乙兩人離B地的距離y(km)與行駛時(shí)x(h)之間的函數(shù)圖象,根據(jù)圖象解答以下問題:
(1)寫出A、B兩地之間的距離;
(2)直接寫出y甲、y乙與x之間的函數(shù)關(guān)系式,請求出點(diǎn)M的坐標(biāo),并解釋該點(diǎn)坐標(biāo)所表示的實(shí)際意義;
(3)若兩人之間保持的距離不超過3km時(shí),能夠用無線對講機(jī)保持聯(lián)系,請直接寫出甲、乙兩人能夠用無線對講機(jī)保持聯(lián)系時(shí)x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB,AD是⊙O的弦,AO平分.過點(diǎn)B作⊙O的切線交AO的延長線于點(diǎn)C,連接CD,BO.延長BO交⊙O于點(diǎn)E,交AD于點(diǎn)F,連接AE,DE.
(1)求證:是⊙O的切線;
(2)若,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+1的圖象交x軸于A(﹣2,0),B(1,0)兩點(diǎn),交y軸于點(diǎn)C,點(diǎn)D是第四象限內(nèi)拋物線上的一個(gè)動點(diǎn),過點(diǎn)D作DE∥y軸交x軸于點(diǎn)E,線段CB的延長線交DE于點(diǎn)M,連接OM,BD交于點(diǎn)N.
(1)求二次函數(shù)的表達(dá)式;
(2)當(dāng)S△OEM=S△DBE時(shí),求點(diǎn)D的坐標(biāo)及sin∠DAE的值;
(3)在(2)的條件下,點(diǎn)P是x軸上一個(gè)動點(diǎn),求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com