在A.線段,B.三角形,C.平行四邊形,D.長方形,E.正方形,F(xiàn).圓中:

(1)是軸對稱圖形的是________;

(2)是旋轉對稱圖形的是________;

(3)是中心對稱圖形的是________.

(答案按字母順序填寫)

答案:A,D,E,F;A,B,C,D,E,F;A,C,D,E,F
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖1,小明將一張矩形紙片沿對角線剪開,得到兩張三角形紙片(如圖2),量得他們的斜邊長為10cm,較小銳角為30°,再將這兩張三角紙片擺成如圖3的形狀,但點B、C、F、D在同一條直線上,且點C與點F重合.(在圖3至圖6中統(tǒng)一用F表示)
精英家教網(wǎng)
小明在對這兩張三角形紙片進行如下操作時遇到了三個問題,請你幫助解決.
(1)將圖3中的△ABF沿BD向右平移到圖4的位置,使點B與點F重合,請你求出平移的距離;
(2)將圖3中的△ABF繞點F順時針方向旋轉30°到圖5的位置,A1F交DE于點G,請你求出線段FG的長度;
(3)將圖3中的△ABF沿直線AF翻折到圖6的位置,AB1交DE于點H,請證明:AH﹦DH.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

操作實驗:
精英家教網(wǎng)
如圖,把等腰三角形沿頂角平分線對折并展開,發(fā)現(xiàn)被折痕分成的兩個三角形成軸對稱.
所以△ABD≌△ACD,所以∠B=∠C.
歸納結論:如果一個三角形有兩條邊相等,那么這兩條邊所對的角也相等.
根據(jù)上述內容,回答下列問題:
思考驗證:如圖(4),在△ABC中,AB=AC.試說明∠B=∠C的理由;
精英家教網(wǎng)精英家教網(wǎng)
探究應用:如圖(5),CB⊥AB,垂足為B,DA⊥AB,垂足為A.E為AB的中點,AB=BC,CE⊥BD.
(1)BE與AD是否相等,為什么?
(2)小明認為AC是線段DE的垂直平分線,你認為對嗎?說說你的理由;
(3)∠DBC與∠DCB相等嗎試?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

將一張矩形紙片沿對角線剪開(如圖1),得到兩張三角形紙片△ABC、△DEF(如圖2),量得他們的斜邊長為6cm,較小銳角為30°,再將這兩張三角紙片擺成如圖3的形狀,且點A、C、E、F在同一條直線上,點C與點E重合.△ABC保持不動,OB為△ABC的中線.現(xiàn)對△DEF紙片進行如下操作時遇到了三個問題,請你幫助解決.
(1)將圖3中的△DEF沿CA向右平移,直到兩個三角形完全重合為止.設平移距離CE為x(即CE的長),求平移過程中,△DEF與△BOC重疊部分的面積S與x的函數(shù)關系式,以及自變量的取值范圍;
(2)△DEF平移到E與O重合時(如圖4),將△DEF繞點O順時針旋轉,旋轉過程中△DEF的斜邊EF交△ABC的BC邊于G,求點C、O、G構成等腰三角形時,△OCG的面積;
(3)在(2)的旋轉過程中,△DEF的邊EF、DE分別交線段BC于點G、H(不與端點重合).求旋轉角∠COG為多少度時,線段BH、GH、CG之間滿足GH2+BH2=CG2,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標系中,直線軸,軸分別交于點A,點B,動點P在第一象限內,由點P軸,軸所作的垂線PM,PN(垂足為M,N)分別與直線AB相交于點E,點F,當點P運動時,矩形PMON的面積為定值2.

   (1)求的度數(shù);

   (2)求證:△∽△;

(3)當點E,F都在線段AB上時,由三條線段

       AE,EF,BF組成一個三角形,記此三角

      形的外接圓面積為,△的面積為

      試探究:是否存在最小值?若存在,

請求出該最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)如圖1,點O是線段AD的中點,分別以AO和DO為邊在線段AD的同側作等邊三角OAB和等邊三角形OCD,連結AC和BD,相交于點E,連結BC.

求:∠AEB的大;

 (2)如圖,△OAB固定不動,保持△OCD的形狀和大小不變,將△OCD繞著點O旋轉(△OAB和△OCD不能重疊),求:∠AEB的大小.

查看答案和解析>>

同步練習冊答案