如圖,有一塊鐵片下腳料,其外輪廓中的曲線(xiàn)是拋物線(xiàn)的一部分,要裁出一個(gè)等邊三角形,使其一個(gè)頂點(diǎn)與拋物線(xiàn)的頂點(diǎn)重合,另外兩個(gè)頂點(diǎn)在拋物線(xiàn)上,求這個(gè)等邊三角形的邊長(zhǎng)(結(jié)果精確到,).

(1)點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)B的坐標(biāo)為(3,0);(2).

解析試題分析:以?huà)佄锞(xiàn)的頂點(diǎn)O為坐標(biāo)原點(diǎn),過(guò)點(diǎn)O作直線(xiàn)AB的平行線(xiàn)和垂線(xiàn)分別作為x軸和y軸,建立平面直角坐標(biāo)系,設(shè)拋物線(xiàn)解析式為y=ax2(a≠0),利用已知數(shù)據(jù)求出a的值,再利用等邊三角形的性質(zhì)計(jì)算即可.
試題解析:以?huà)佄锞(xiàn)的頂點(diǎn)O為坐標(biāo)原點(diǎn),過(guò)點(diǎn)O作直線(xiàn)AB的平行線(xiàn)和垂線(xiàn)分別作為x軸和y軸,建立平面直角坐標(biāo)系.

則D(3,-6)
設(shè)拋物線(xiàn)解析式為y=ax2(a≠0),
∵D(3,-6)在拋物線(xiàn)上代入得:a=?,
∴y=?x2
∵△ABO是等邊三角形,
∴OH=BH,
設(shè)B(x,?x),
∴?x=?x2,
∴x1=0(舍),x2=,
∴BH=,AB=3≈5.2(dm),
答:等邊三角形的邊長(zhǎng)為5.2dm
考點(diǎn): 二次函數(shù)的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知直線(xiàn)分別與y軸、x軸相交于A(yíng)、B兩點(diǎn),與二次函數(shù)的圖像交于A(yíng)、C兩點(diǎn).

(1)當(dāng)點(diǎn)C坐標(biāo)為(,)時(shí),求直線(xiàn)AB的解析式;
(2)在(1)中,如圖,將△ABO沿y軸翻折180°,若點(diǎn)B的對(duì)應(yīng)點(diǎn)D恰好落在二次函數(shù)的圖像上,求點(diǎn)D到直線(xiàn)AB的距離;
(3)當(dāng)-1≤x≤1時(shí),二次函數(shù)有最小值-3,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

二次函數(shù)的圖象與x軸交于點(diǎn)A(-1, 0),與y軸交于點(diǎn)C(0,-5),且經(jīng)過(guò)點(diǎn)D(3,-8).
(1)求此二次函數(shù)的解析式和頂點(diǎn)坐標(biāo);
(2)請(qǐng)你寫(xiě)出一種平移的方法,使平移后拋物線(xiàn)的頂點(diǎn)落在原點(diǎn)處,并寫(xiě)出平移后拋物線(xiàn)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,在平面直角坐標(biāo)系中,Rt△OBC的兩條直角邊分別落在x軸、y軸上,且OB=1,OC=3,將△OBC繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到△OAE,將△OBC沿y軸翻折得到△ODC,AE與CD交于點(diǎn)F.

(1)若拋物線(xiàn)過(guò)點(diǎn)A、B、C, 求此拋物線(xiàn)的解析式;
(2)求△OAE與△ODC重疊的部分四邊形ODFE的面積;
(3)點(diǎn)M是第三象限內(nèi)拋物線(xiàn)上的一動(dòng)點(diǎn),點(diǎn)M在何處時(shí)△AMC的面積最大?最大面積是多少?求出此時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知二次函數(shù)為常數(shù),且.
(1)求證:不論為何值,該函數(shù)的圖象與軸總有兩個(gè)公共點(diǎn);
(2)設(shè)該函數(shù)的圖象的頂點(diǎn)為C,與軸交于A(yíng),B兩點(diǎn),當(dāng)△ABC的面積等于2時(shí),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:如圖,在平面直角坐標(biāo)系中,拋物線(xiàn)過(guò)點(diǎn)A(6,0)和點(diǎn)B(3,).

(1)求拋物線(xiàn)的解析式;
(2)將拋物線(xiàn)沿x軸翻折得拋物線(xiàn),求拋物線(xiàn)的解析式;
(3)在(2)的條件下,拋物線(xiàn)上是否存在點(diǎn)M,使相似?如果存在,求出點(diǎn)M的坐標(biāo);如果不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知△OAB的頂點(diǎn)A(﹣6,0),B(0,2),O是坐標(biāo)原點(diǎn),將△OAB繞點(diǎn)O按順時(shí)針旋轉(zhuǎn)90°,得到△ODC.

(1)寫(xiě)出C,D兩點(diǎn)的坐標(biāo);
(2)求過(guò)A,D,C三點(diǎn)的拋物線(xiàn)的解析式,并求此拋物線(xiàn)頂點(diǎn)E的坐標(biāo);
(3)證明AB⊥BE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知:為邊長(zhǎng)是的等邊三角形,四邊形為邊長(zhǎng)是6的正方形. 現(xiàn)將等邊和正方形按如圖①的方式擺放,使點(diǎn)與點(diǎn)重合,點(diǎn)、、在同一條直線(xiàn)上,從圖①的位置出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿方向向右勻速運(yùn)動(dòng),當(dāng)點(diǎn)與點(diǎn)重合時(shí)暫停運(yùn)動(dòng),設(shè)的運(yùn)動(dòng)時(shí)間為秒().

(1)在整個(gè)運(yùn)動(dòng)過(guò)程中,設(shè)等邊和正方形重疊部分的面積為,請(qǐng)直接寫(xiě)出之間的函數(shù)關(guān)系式;
(2)如圖②,當(dāng)點(diǎn)與點(diǎn)重合時(shí),作的角平分線(xiàn)于點(diǎn),將繞點(diǎn)逆時(shí)針旋轉(zhuǎn),使邊與邊重合,得到. 在線(xiàn)段上是否存在點(diǎn),使得為等腰三角形. 如果存在,求線(xiàn)段的長(zhǎng)度;若不存在,請(qǐng)說(shuō)明理由.
(3)如圖③,若四邊形為邊長(zhǎng)是的正方形,的移動(dòng)速度為每秒 個(gè)單位長(zhǎng)度,其余條件保持不變. 開(kāi)始移動(dòng)的同時(shí),點(diǎn)從點(diǎn)開(kāi)始,沿折線(xiàn)以每秒個(gè)單位長(zhǎng)度開(kāi)始移動(dòng),停止運(yùn)動(dòng)時(shí),點(diǎn)也停止運(yùn)動(dòng). 設(shè)在運(yùn)動(dòng)過(guò)程中,交折線(xiàn)點(diǎn),則當(dāng)時(shí),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知拋物線(xiàn)與x軸交于點(diǎn)B、C,與y軸交于點(diǎn)E,且點(diǎn)B在點(diǎn)C的左側(cè).

(1)若拋物線(xiàn)過(guò)點(diǎn)M(-2,-2),求實(shí)數(shù)a的值;
(2)在(1)的條件下,解答下列問(wèn)題:
①求出△BCE的面積;
②在拋物線(xiàn)的對(duì)稱(chēng)軸上找一點(diǎn)P,使CP+EP的值最小,求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案