【題目】如圖1,拋物線yax24ax+b經(jīng)過(guò)點(diǎn)A1,0),與x軸交于點(diǎn)B,與y軸交于點(diǎn)C,且OBOC

1)求拋物線的解析式;

2)將OAC沿AC翻折得到ACE,直線AE交拋物線于點(diǎn)P,求點(diǎn)P的坐標(biāo);

3)如圖2,點(diǎn)M為直線BC上一點(diǎn)(不與B、C重合),連OM,將OMO點(diǎn)旋轉(zhuǎn)90°,得到線段ON,是否存在這樣的點(diǎn)N,使點(diǎn)N恰好在拋物線上?若存在,求出點(diǎn)N的坐標(biāo);若不存在,說(shuō)明理由.

【答案】(1)y=﹣x2+4x3.(2)點(diǎn)P);(3)存在符合條件的N點(diǎn),且坐標(biāo)為N2,1)或(5,﹣8).

【解析】

1)根據(jù)拋物線的解析式,可得拋物線的對(duì)稱軸方程,進(jìn)而可根據(jù)點(diǎn)A的坐標(biāo)表示出點(diǎn)B的坐標(biāo),已知OB=OC,即可得到點(diǎn)C的坐標(biāo),從而利用待定系數(shù)法求得拋物線的解析式.

2)點(diǎn)P為直線AE和拋物線的交點(diǎn),欲求點(diǎn)P,必須先求出直線AE的解析式;設(shè)直線AEy軸的交點(diǎn)為F,易得FOA∽△FEC,由于OA=1,EC=3,根據(jù)相似三角形的對(duì)應(yīng)邊成比例即可得到FE=3OF,設(shè)OF=x,則EF=3x,AF=3x-1,進(jìn)而可在RtFOA中求出x的值,也就能求出F點(diǎn)的坐標(biāo),然后利用待定系數(shù)法求出直線AE的解析式,聯(lián)立拋物線的解析式即可得到點(diǎn)P的坐標(biāo).

3)此題應(yīng)分三種情況討論:

①當(dāng)點(diǎn)M在第一象限時(shí),可設(shè)Ma,a-3),由于ON是由OM旋轉(zhuǎn)90°而得,因此OMN是等腰直角三角形,分別過(guò)MNMG、NH垂直于x軸,即可證得OMG≌△NOH,得MG=OH,NH=OG,由此可表示出N點(diǎn)的坐標(biāo),然后將其代入拋物線的解析式中,即可求得點(diǎn)MN的坐標(biāo);

②當(dāng)點(diǎn)M在第三象限,④點(diǎn)M在第四象限時(shí),解法同①.

(1)由題意知:拋物線的對(duì)稱軸為:x=2,則B(3,0);

已知OB=OC=3,則C(0,-3);

設(shè)拋物線的解析式為:y=a(x-1)(x-3),依題意有:

a(0-1)(0-3)=-3,a=-1;

故拋物線的解析式為:y=-x2+4x-3.

2)設(shè)AEy軸于點(diǎn)F;

易證得FOA∽△FEC,有

設(shè)OFx,則EF3x

所以FA3x1;

RtFOA中,由勾股定理得:

3x12x2+1,

解得x

OF,F0);

求得直線AEy=﹣x+,

聯(lián)立拋物線的解析式得:

解得,

故點(diǎn)P,).

3)∵B3,0),C0,﹣3),

∴直線BCyx3;

設(shè)點(diǎn)Maa3),則:

①當(dāng)點(diǎn)M在第一象限時(shí),OGa,MGa3;

過(guò)MMGx軸于G,過(guò)NNHx軸于H;

根據(jù)旋轉(zhuǎn)的性質(zhì)知:∠MON90°,OMON,

則可證得MOG≌△NOH,得:

OGNHaOHMGa3,

Na3,﹣a),

將其代入拋物線的解析式中,得:

﹣(a32+4a3)﹣3=﹣a,

整理得:a211a+240,

a3(舍去),a8;

M8,5),N5,﹣8).

②當(dāng)點(diǎn)M在第三象限時(shí),OG=﹣a,MG3a;

同①可得:MGOH3aOGNH=﹣a,則N3a,a),代入拋物線的解析式可得:

﹣(3a2+43a)﹣3a,

整理得:a2a0,故a0a1;

由于點(diǎn)M在第三象限,

所以a0,

a0a1均不合題意,此種情況不成立;

③當(dāng)點(diǎn)M在第四象限時(shí),OGaMG3a;

同①得:N3a,a),在②中已經(jīng)求得此時(shí)a0(舍去),a1

M1,﹣2),N21);

綜上可知:存在符合條件的N點(diǎn),且坐標(biāo)為N2,1)或(5,﹣8).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面內(nèi)容,并按要求解決問(wèn)題: 問(wèn)題:在平面內(nèi),已知分別有個(gè)點(diǎn),個(gè)點(diǎn),個(gè)點(diǎn),5 個(gè)點(diǎn),n 個(gè)點(diǎn),其中任意三 個(gè)點(diǎn)都不在同一條直線上.經(jīng)過(guò)每?jī)牲c(diǎn)畫(huà)一條直線,它們可以分別畫(huà)多少條直線?探究:為了解決這個(gè)問(wèn)題,希望小組的同學(xué)們?cè)O(shè)計(jì)了如下表格進(jìn)行探究:(為了方便研 究問(wèn)題,圖中每條線段表示過(guò)線段兩端點(diǎn)的一條直線)

請(qǐng)解答下列問(wèn)題:

1)請(qǐng)幫助希望小組歸納,并直接寫(xiě)出結(jié)論:當(dāng)平面內(nèi)有個(gè)點(diǎn)時(shí),直線條數(shù)為 ;

2)若某同學(xué)按照本題中的方法,共畫(huà)了條直線,求該平面內(nèi)有多少個(gè)已知點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在⊙O中,AB是直徑,點(diǎn)D是⊙O上一點(diǎn),點(diǎn)C是的中點(diǎn),CE⊥AB于點(diǎn)E,過(guò)點(diǎn)D的切線交EC的延長(zhǎng)線于點(diǎn)G,連接AD,分別交CE,CB于點(diǎn)P,Q,連接AC,關(guān)于下列結(jié)論:①∠BAD=∠ABC;②GP=GD;③點(diǎn)P是△ACQ的外心,其中結(jié)論正確的是________(只需填寫(xiě)序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,正方形ABCD,GBC邊上ー點(diǎn),連接AG,分別以AGBG為直角邊作等腰RtAGF和等腰RtGBE,使∠GBE=∠AGF90°,點(diǎn)E,FBC下方,連接EF.

求證:①∠BAG=∠BGF,

CGEF:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,,,的平分線相交于點(diǎn)E,過(guò)點(diǎn)EAC于點(diǎn)F,則;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD中,MBC上一點(diǎn),FAM的中點(diǎn),EF⊥AM,垂足為F,交AD的延長(zhǎng)線于點(diǎn)E,交DC于點(diǎn)N

1)求證:△ABM∽△EFA;

2)若AB=12BM=5,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某校數(shù)學(xué)興趣小組為測(cè)量校園主教學(xué)樓AB的高度,由于教學(xué)樓底部不能直接到達(dá),故興趣小組在平地上選擇一點(diǎn)C,用測(cè)角器測(cè)得主教學(xué)樓頂端A的仰角為30°,再向主教學(xué)樓的方向前進(jìn)24米,到達(dá)點(diǎn)E處(CEB三點(diǎn)在同一直線上),又測(cè)得主教學(xué)樓頂端A的仰角為60°,已知測(cè)角器CD的高度為1.6米,請(qǐng)計(jì)算主教學(xué)樓AB的高度.(≈1.73,結(jié)果精確到0.1米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤(pán)被它的兩條直徑分成了四個(gè)分別標(biāo)有數(shù)字的扇形區(qū)域,其中標(biāo)有數(shù)字“1”的扇形圓心角為120°.轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán),待轉(zhuǎn)盤(pán)自動(dòng)停止后,指針指向一個(gè)扇形的內(nèi)部,則該扇形內(nèi)的數(shù)字即為轉(zhuǎn)出的數(shù)字,此時(shí),稱為轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)一次(若指針指向兩個(gè)扇形的交線,則不計(jì)轉(zhuǎn)動(dòng)的次數(shù),重新轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán),直到指針指向一個(gè)扇形的內(nèi)部為止)

(1)轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)一次,求轉(zhuǎn)出的數(shù)字是-2的概率;

(2)轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)兩次,用樹(shù)狀圖或列表法求這兩次分別轉(zhuǎn)出的數(shù)字之積為正數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是位于陜西省西安市薦福寺內(nèi)的小雁塔,是中國(guó)早期方形密檐式磚塔的典型作品,并作為絲綢之路的一處重要遺址點(diǎn),被列入《世界遺產(chǎn)名錄》.小銘、小希等幾位同學(xué)想利用一些測(cè)量工具和所學(xué)的幾何知識(shí)測(cè)量小雁塔的高度,由于觀測(cè)點(diǎn)與小雁塔底部間的距離不易測(cè)量,因此經(jīng)過(guò)研究需要進(jìn)行兩次測(cè)量,于是在陽(yáng)光下,他們首先利用影長(zhǎng)進(jìn)行測(cè)量,方法如下:小銘在小雁塔的影子頂端D處豎直立一根木棒CD,并測(cè)得此時(shí)木棒的影長(zhǎng)DE=2.4米;然后,小希在BD的延長(zhǎng)線上找出一點(diǎn)F,使得A、C、F三點(diǎn)在同一直線上,并測(cè)得DF=2.5米.已知圖中所有點(diǎn)均在同一平面內(nèi),木棒高CD=1.72米,ABBF,CDBF,試根據(jù)以上測(cè)量數(shù)據(jù),求小雁塔的高度AB.

查看答案和解析>>

同步練習(xí)冊(cè)答案