【題目】綜合與實(shí)踐

如圖,根據(jù)給出的數(shù)軸,解答下面的問(wèn)題:

1)已知點(diǎn)表示的數(shù)分別為6-4,觀察數(shù)軸,與點(diǎn)距離為5的點(diǎn)所表示的數(shù)是 兩點(diǎn)之間的距離為 ;

2)若點(diǎn)到點(diǎn),點(diǎn)的距離相等,觀察數(shù)軸并結(jié)合所學(xué)知識(shí)求點(diǎn)表示的數(shù);

3)在(2)的條件下,若動(dòng)點(diǎn)從點(diǎn)出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為秒.則點(diǎn)表示的數(shù)是多少(用含字母的式子表示);當(dāng)等于多少秒時(shí),之間的距離為3個(gè)單位長(zhǎng)度.

【答案】11-910;(2)點(diǎn)表示的數(shù)為1;(314

【解析】

1)分在點(diǎn)B左邊和右邊兩種情況考慮;兩點(diǎn)之間的距離為點(diǎn)A表示的數(shù)-點(diǎn)B表示的數(shù);
2)分別表示出B、C兩點(diǎn)之間的距離和C、A兩點(diǎn)之間的距離,據(jù)此列出方程求解;
3)先表示出點(diǎn)P運(yùn)動(dòng)的路程為2t,于是可以表示點(diǎn)表示的數(shù);分“點(diǎn)在點(diǎn)的左邊和點(diǎn)在點(diǎn)的右邊”兩種情況列方程求解.

解:(1)與點(diǎn)距離為5的點(diǎn)所表示的數(shù)是-4+5=1-4-5=-9

兩點(diǎn)之間的距離為6-(-4)=10

故答案是:1-9,10;

2)觀察數(shù)軸,可知點(diǎn)一定在點(diǎn)與點(diǎn)之間,設(shè)點(diǎn)表示的數(shù)為,

則有

解方程,得

即點(diǎn)表示的數(shù)為1

3)點(diǎn)表示的數(shù)是

依題意得:當(dāng)點(diǎn)在點(diǎn)的左邊時(shí),,即,則;

當(dāng)點(diǎn)在點(diǎn)的右邊時(shí),,即,則

綜上所述,當(dāng)等于14秒時(shí),之間的距離為3個(gè)單位長(zhǎng)度.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲乙兩地相距400千米,一輛貨車和一輛轎車先后從甲地出發(fā)駛向乙地,如圖,線段OA表示貨車離甲地的路程y(千米)與所用時(shí)間x(小時(shí))之間的函數(shù)關(guān)系,折線BCD表示轎車離甲地的路程y(千米)與x(小時(shí))之間的函數(shù)關(guān)系,根據(jù)圖象解答下列問(wèn)題:

1)求線段CD對(duì)應(yīng)的函數(shù)表達(dá)式;

2)求E點(diǎn)的坐標(biāo),并解釋E點(diǎn)的實(shí)際意義;

3)若已知轎車比貨車晚出發(fā)2分鐘,且到達(dá)乙地后在原地等待貨車,則當(dāng)x= 小時(shí),貨車和轎車相距30千米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,已知D,E分別為邊BC,AD的中點(diǎn),且SABC=4 cm2,則△BEC的面積為(  )

A. 2 cm2 B. 1 cm2 C. 0.5 cm2 D. 0.25 cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】出租車司機(jī)小王星期天上午營(yíng)運(yùn)時(shí)是在東西走向的大街上進(jìn)行的,如果規(guī)定向東為正,向西為負(fù),他這天上午所接八位乘客的行車?yán)锍蹋▎挝唬?/span>):-3,+6,-1,-2,+4,-2,+5,-4

問(wèn):(1)將最后一位乘客送到目的地時(shí),小王在什么位置?

2)若汽車耗油量為,這天上午小王接送乘客,出租車共耗油多少升?

3)若出租車的起步價(jià)為8元,起步里程為(包括),超過(guò)部分每千米1.5元,則小王這天上午共得車費(fèi)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】王叔叔在太原市小店區(qū)買了一套商品房,他準(zhǔn)備用1萬(wàn)元將地面鋪上地磚,這套住宅的建筑平面圖(由多個(gè)長(zhǎng)方形組成)如圖所示(圖中長(zhǎng)度單位:),請(qǐng)據(jù)圖解答下列問(wèn)題.

1)用含的代數(shù)式表示這所住宅的總面積;

2)某公司地磚報(bào)價(jià)為每平米200元,若,在現(xiàn)有條件下,王叔叔是否會(huì)選擇該公司鋪地磚?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,點(diǎn)P、Q分別是等邊△ABC邊AB、BC上的動(dòng)點(diǎn)(端點(diǎn)除外),點(diǎn)P從頂點(diǎn)A、點(diǎn)Q從頂點(diǎn)B同時(shí)出發(fā),且它們的運(yùn)動(dòng)速度相同,連接AQ、CP交于點(diǎn)M.

(1)求證:△ABQ≌△CAP;

(2)當(dāng)點(diǎn)P、Q分別在AB、BC邊上運(yùn)動(dòng)時(shí),∠QMC變化嗎?若變化,請(qǐng)說(shuō)明理由;若不變,求出它的度數(shù).

(3)如圖2,若點(diǎn)P、Q在運(yùn)動(dòng)到終點(diǎn)后繼續(xù)在射線AB、BC上運(yùn)動(dòng),直線AQ、CP交點(diǎn)為M,則∠QMC變化嗎?若變化,請(qǐng)說(shuō)明理由;若不變,直接寫(xiě)出它的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】完成下面的推理.

已知:如圖,ABCDGH,EG平分∠BEF,FG平分∠EFD.

試說(shuō)明:EGF=90°.

:因?yàn)?/span>HGAB(已知),

所以∠1=3(  ).

又因?yàn)?/span>HGCD(已知),

所以∠2=4(  ).

因?yàn)?/span>ABCD(已知),

所以∠BEF+  =180°(  ).

又因?yàn)?/span>EG平分∠BEF(已知),

所以∠1=  (  ).

又因?yàn)?/span>FG平分∠EFD(已知),

所以∠2=  (  ),

所以∠1+2=(  +  ).

所以∠1+2=90°.

所以∠3+4=90°(  ),即∠EGF=90°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,以點(diǎn)為圓心,8為半徑的圓與軸交于,兩點(diǎn),過(guò)作直線軸負(fù)方向相交成的角,且交軸于點(diǎn),以點(diǎn)為圓心的圓與軸相切于點(diǎn).

(1)求直線的解析式;

(2)將以每秒1個(gè)單位的速度沿軸向左平移,當(dāng)第一次與外切時(shí),求平移的時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)B,FC,E在直線lF,C之間不能直接測(cè)量,點(diǎn)A,Dl異側(cè),測(cè)得AB=DE,AC=DF,BF=EC.

1求證:ABC≌△DEF;

2指出圖中所有平行的線段,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案