【題目】
(1)計算: +|﹣1|﹣( ﹣1)0
(2)解方程: = .
【答案】
(1)解:原式=3+1﹣1=3;
(2)解:去分母得:3x+3=2x﹣2,
解得:x=﹣5,
經(jīng)檢驗x=﹣5是分式方程的解.
【解析】(1)原式第一項利用平方根定義化簡,第二項利用絕對值的代數(shù)意義化簡,第三項利用零指數(shù)冪法則計算即可得到結果;(2)分式方程去分母轉化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗即可得到分式方程的解.
【考點精析】利用零指數(shù)冪法則和去分母法對題目進行判斷即可得到答案,需要熟知零次冪和負整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù));先約后乘公分母,整式方程轉化出.特殊情況可換元,去掉分母是出路.求得解后要驗根,原留增舍別含糊.
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,正方形ABCD中,E為BC邊上一點,F(xiàn)為BA延長線上一點,且CE=AF.連接DE、DF.求證:DE=DF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為1,點P在射線BC上(異于點B、C),直線AP與對角線BD及射線DC分別交于點F、Q
(1)若BP= ,求∠BAP的度數(shù);
(2)若點P在線段BC上,過點F作FG⊥CD,垂足為G,當△FGC≌△QCP時,求PC的長;
(3)以PQ為直徑作⊙M. ①判斷FC和⊙M的位置關系,并說明理由;
②當直線BD與⊙M相切時,直接寫出PC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】設a1 , a2 , …,a2014是從1,0,﹣1這三個數(shù)中取值的一列數(shù),若a1+a2+…+a2014=69,(a1+1)2+(a2+1)2+…+(a2014+1)2=4001,則a1 , a2 , …,a2014中為0的個數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某店因為經(jīng)營不善欠下38400元的無息貸款的債務,想轉行經(jīng)營服裝專賣店又缺少資金.“中國夢想秀”欄目組決定借給該店30000元資金,并約定利用經(jīng)營的利潤償還債務(所有債務均不計利息).已知該店代理的品牌服裝的進價為每件40元,該品牌服裝日銷售量y(件)與銷售價x(元/件)之間的關系可用圖中的一條折線(實線)來表示.該店應支付員工的工資為每人每天82元,每天還應支付其它費用為106元(不包含債務).
(1)求日銷售量y(件)與銷售價x(元/件)之間的函數(shù)關系式;
(2)若該店暫不考慮償還債務,當某天的銷售價為48元/件時,當天正好收支平衡(收人=支出),求該店員工的人數(shù);
(3)若該店只有2名員工,則該店最早需要多少天能還清所有債務,此時每件服裝的價格應定為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,對角線AC、BD相交于點O,過點O作一條直線分別交DA、BC的延長線于點E、F,連接BE、DF.
(1)求證:四邊形BFDE是平行四邊形;
(2)若EF⊥AB,垂足為M,tan∠MBO= ,求EM:MF的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是某通道的側面示意圖,已知AB∥CD∥EF,AM∥BC∥DE,AB=CD=EF,∠AMF=90°,∠BAM=30°,AB=6m.
(1)求FM的長;
(2)連接AF,若sin∠FAM= ,求AM的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一枚棋子放在邊長為1個單位長度的正六邊形ABCDEF的頂點A處,通過摸球來確定該棋子的走法,其規(guī)則是:在一只不透明的袋子中,裝有3個標號分別為1、2、3的相同小球,攪勻后從中任意摸出1個,記下標號后放回袋中并攪勻,再從中任意摸出1個,摸出的兩個小球標號之和是幾棋子就沿邊按順時針方向走幾個單位長度. 棋子走到哪一點的可能性最大?求出棋子走到該點的概率.(用列表或畫樹狀圖的方法求解)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com