【題目】如圖,三角形ABC中,AB⊥AC,AD⊥BC,EF⊥BC,∠1=∠2.
(1)求證:DE⊥AC
(2)請直接寫出圖中所有與∠1的和為90°的角
【答案】(1)見解析(2)∠EDF、∠FEC、∠DAE、∠ABC.
【解析】
(1)根據(jù)AD⊥BC,EF⊥BC得到AD∥EF,得到∠DAC=∠FEC,再根據(jù)AB⊥AC得到∠2+∠DAC=90°,又∠1=∠2,即可得到∠1+∠FEC =90°,故可證明;
(2)根據(jù)同角或等角的余角相等即可進(jìn)行求解.
(1)∵AD⊥BC,EF⊥BC
∴AD∥EF,
∴∠DAC=∠FEC,
∵AB⊥AC
∴∠2+∠DAC=90°,
又∠1=∠2,
∴∠1+∠FEC =90°,
∴DE⊥AC
(2)由(1)可得AB∥DE,
由圖可知∠1+∠EDF=90°,∠1+∠FEC=90°,∠1+∠DAE=90°,∠1+∠ABC=90°,
故圖中所有與∠1的和為90°的角為∠EDF、∠FEC、∠DAE、∠ABC.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠C=90°,AC=3,AB=5,點(diǎn)O在BC邊的中線AD上,⊙O與BC相切于點(diǎn)E,且∠OBA=∠OBC.
(1)求證:AB為⊙O的切線;
(2)求⊙O的半徑;
(3)求tan∠BAD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直徑為1個單位的圓片上有一點(diǎn)A與數(shù)軸上的原點(diǎn)重合,AB是圓片的直徑.
(1)把圓片沿數(shù)軸向左滾動1周,點(diǎn)B到達(dá)數(shù)軸上點(diǎn)C的位置,點(diǎn)C表示的數(shù)是 數(shù)(填“無理”或“有理”),這個數(shù)是 ;
(2)把圓片沿數(shù)軸滾動2周,點(diǎn)A到達(dá)數(shù)軸上點(diǎn)D的位置,點(diǎn)D表示的數(shù)是 ;
(3)圓片在數(shù)軸上向右滾動的周數(shù)記為正數(shù),圓片在數(shù)軸上向左滾動的周數(shù)記為負(fù)數(shù),依次運(yùn)動情況記錄如下:+2,﹣1,+3,﹣4,﹣3
①第幾次滾動后,A點(diǎn)距離原點(diǎn)最近?第幾次滾動后,A點(diǎn)距離原點(diǎn)最遠(yuǎn)?
②當(dāng)圓片結(jié)束運(yùn)動時,A點(diǎn)運(yùn)動的路程共有多少?此時點(diǎn)A所表示的數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列等式:
第1個等式:a1=,
第2個等式:a2=,
第3個等式:a3=,
…
請解答下列問題:
(1)按以上規(guī)律列出第5個等式:a5= = ;
(2)用含有n的代數(shù)式表示第n個等式:an= = (n為正整數(shù));
(3)求a1+a2+a3+…+a2019的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),拋物線與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C(0,).[圖(2)為解答備用圖]
(1)__________,點(diǎn)A的坐標(biāo)為___________,點(diǎn)B的坐標(biāo)為__________;
(2)設(shè)拋物線的頂點(diǎn)為M,求四邊形ABMC的面積;
(3)在x軸下方的拋物線上是否存在一點(diǎn)D,使四邊形ABDC的面積最大?若存在,請求出點(diǎn)D的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】.(1)由若干個相同的小立方體搭成的一個幾何體的主視圖和俯視圖如圖所示,俯視圖的方格中的字母和數(shù)字表示該位置上小立方體的個數(shù),則______
(2)如圖(2),是由若干個完全相同的小正方體組成的一個幾何體
①請畫出這個幾何體的左視圖和俯視圖; 用陰影表示
②如果在這個幾何體上再添加一些相同的小正方體,并保持這個幾何體的俯視圖和左視圖不變,那么最多可以再添加______個小正方體?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】水果店以每箱60元新進(jìn)一批蘋果共400箱,為計算總重量,從中任選30箱蘋果稱重,發(fā)現(xiàn)每箱蘋果重量都在10千克左右,現(xiàn)以10千克為標(biāo)準(zhǔn),超過10千克的數(shù)記為正數(shù),不足10千克的數(shù)記為負(fù)數(shù),將稱重記錄如下:
規(guī)格 | ﹣0.2 | ﹣0.1 | 0 | 0.1 | 0.2 | 0.5 |
筐數(shù) | 5 | 8 | 2 | 6 | 8 | 1 |
(1)求30箱蘋果的總重量
(2)若每千克蘋果的售價為10元,則賣完這批蘋果共獲利多少元
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a、b滿足.請回管問題:
(1)請直接寫出a、b的值,a=______,b=_______.
(2)當(dāng)x的取值范圍是_________時,有最小值,這個最小值是_____.
(3)數(shù)軸a、b上兩個數(shù)所對應(yīng)的分別為A、B,AB的中點(diǎn)為點(diǎn)C,點(diǎn)A、B、C同時開始在數(shù)軸上運(yùn)動,若點(diǎn)A以每秒1個單位長度的速度向左運(yùn)動,點(diǎn)B和點(diǎn)C分別以每秒1個單位長度和3個單位長度的速度向右運(yùn)動,當(dāng)A、B兩點(diǎn)重合時,運(yùn)動停止.
①經(jīng)過2秒后,求出點(diǎn)A與點(diǎn)B之間的距離AB.
②經(jīng)過t秒后,請問:BC+AB的值是否隨著時間t的變化而變化?若變化,請說明理由;若不變,請求其值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一名足球守門員練習(xí)折返跑,從球門線出發(fā),向前記作正數(shù),返回記作負(fù)數(shù),他的記錄如下:(單位:米)+5,-3,+10,-8,-6,+12,-10
(1)守門員最后是否回到了球門線的位置?
(2)在練習(xí)過程中,守門員離開球門最遠(yuǎn)距離是多少米?
(3)守門員全部練習(xí)結(jié)束后,他共跑了多少米?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com