【題目】在平面直角坐標系xOy中,將一塊含有45°角的直角三角板如圖放置,直角頂點C的坐標為(1,0),頂點A的坐標為(0,2),頂點B恰好落在第一象限的雙曲線上,現(xiàn)將直角三角板沿x軸正方向平移,當頂點A恰好落在該雙曲線上時停止運動,則此時點C的對應(yīng)點C′的坐標為( 。

A. ,0) B. (2,0) C. ,0) D. (3,0)

【答案】C

【解析】

解:過點BBDx軸于點D,∵∠ACO+∠BCD=90°,∠OAC+ACO=90°,∴∠OAC=∠BCD,在ACOBCD中,∵∠OAC=∠BCD,∠AOC=∠BDCAC=BC,∴△ACO≌△BCD(AAS),∴OC=BD,OA=CD,∵A(0,2),C(1,0),∴OD=3,BD=1,∴B(3,1),∴設(shè)反比例函數(shù)的解析式為,將B(3,1)代入,∴k=3,∴,∴y=2代入,∴x=,當頂點A恰好落在該雙曲線上時,此時點A移動了個單位長度,C也移動了個單位長度,此時點C的對應(yīng)點C的坐標為(,0).故選C.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在RtABC中,∠BAC=90°,AB=AC,D,E兩點分別AB,AC上,且DEBC,將△ADE繞點A順時針旋轉(zhuǎn),記旋轉(zhuǎn)角為α.

(1)問題發(fā)現(xiàn) a=0°時,線段BD,CE的數(shù)量關(guān)系是______;

(2)拓展探究 a360°時,(1)中的結(jié)論有無變化?請僅就圖2的情形給出證明;

(3)問題解決 設(shè)DE=,BC=3,0°α360°,ADE旋轉(zhuǎn)至A,B,E三點共線時,直接寫出線段BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形QABC是矩形,ADEF是正方形,點A、Dx軸的正半軸上,點Cy軸的正半軸上,點FAB上,點B、E在反比例函數(shù)y=kx的圖象上,OA=1,OC=6,則正方形ADEF的邊長為(  )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關(guān)于的二次函數(shù),這兩個二次函數(shù)的圖象中的一條與軸交于兩個不同的點.

試判斷哪個二次函數(shù)的圖象經(jīng)過,兩點;

點坐標為,試求點坐標;

的條件下,對于經(jīng)過,兩點的二次函數(shù),當取何值時,的值隨值的增大而減。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ACDRt△BEC中,若AD=BE,DC=EC,則不正確的結(jié)論是( )

A. Rt△ACDRt△BCE全等 B. OA=OB

C. EAC的中點 D. AE=BD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC中,ABAC10cmBC8cm,點DAB的中點.如果點P在線段BC上以3cm/s的速度由點BC點運動,同時,點Q在線段CA上由點CA點運動.

1)若點Q的運動速度與點P的運動速度相等,經(jīng)過1秒后,△BPD與△CQP是否全等,請說明理由.

2)若點Q的運動速度與點P的運動速度不相等,當點Q的運動速度為多少時,能夠使△BPD與△CQP全等?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=﹣x+4x軸交于點C,與y軸交于點B,拋物線y=ax2+x+c經(jīng)過B、C兩點.

(1)求拋物線的解析式;

(2)如圖,點E是直線BC上方拋物線上的一動點,當△BEC面積最大時,請求出點E的坐標;

(3)在(2)的結(jié)論下,過點Ey軸的平行線交直線BC于點M,連接AM,點Q是拋物線對稱軸上的動點,在拋物線上是否存在點P,使得以P、Q、A、M為頂點的四邊形是平行四邊形?如果存在,請直接寫出點P的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,菱形中,,中點,,,于點,于點

求證:四邊形是矩形.

的度數(shù).

求菱形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,AB分別在射線OA,ON上,且∠MON為鈍角,現(xiàn)以線段OA,OB為斜邊向∠MON的外側(cè)作等腰直角三角形,分別是OAP,OBQ,點C,DE分別是OA,OBAB的中點.

1)求證:PCE≌△EDQ;

2)延長PC,QD交于點R.如圖2,若∠MON=150°,求證:ABR為等邊三角形;

3如圖3,若ARB∽△PEQ,求∠MON大小.

查看答案和解析>>

同步練習冊答案