精英家教網 > 初中數學 > 題目詳情
已知:拋物線與x軸有兩個不同的交點。
(1)求k的取值范圍;
(2)當k為整數,且關于x的方程3x=kx-1的解是負數時,求拋物線的解析式;
(3)在(2)的條件下,若在拋物線和x軸所圍成的封閉圖形內畫出一個最大的正方形,使得正方形的一邊在x軸上,其對邊的兩個端點在拋物線上,試求出這個最大正方形的邊長。

解:(1),
依題意,得,
∴k的取值范圍是k且k≠1,①;
(2)解方程3x=kx-1,得,
∵方程3x=kx-1的解是負數,
∴3-k>0,∴k<3,②,
綜合①②,及k為整數,可得k=2,
∴拋物線的解析式為y=x2+4x;
(3)如圖,設最大正方形ABCD的邊長為m,
則B、C兩點的縱坐標為-m,
且由對稱性可知:B、C兩點關于拋物線對稱軸對稱,
∵拋物線的對稱軸為:x=-2,
∴點C的坐標為,
∵C點在拋物線上,
,
整理,得,
(舍負),

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

已知:拋物線與x軸交于A(-2,0)、B(4,0),與y軸交于C(0,4).
(1)求拋物線頂點D的坐標;
(2)設直線CD交x軸于點E,過點B作x軸的垂線,交直線CD于點F,將拋物線沿其對稱軸上下平移,使拋物線與線段EF總有公共點.試探究:拋物線向上最多可以平移多少個單位長度,向下最多可以平移多少個單位長度?

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

已知,拋物線數學公式與x軸正半軸交于A、B兩點(A點在B點左邊),且AB=4.
(1)求k值;
(2)該拋物線與直線數學公式交于C、D兩點,求S△ACD;
(3)該拋物線上是否存在不同于A點的點P,使S△PCD=S△ACD?若存在,求出P點坐標.
(4)若該拋物線上有點P,使S△PCD=tS△ACD,拋物線上滿足條件的P點有2個,3個,4個時,分別直接寫出t的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

已知:拋物線與x軸交于A(-2,0)、B(4,0),與y軸交于C(0,4).
(1)求拋物線頂點D的坐標;
(2)設直線CD交x軸于點E,過點B作x軸的垂線,交直線CD于點F,將拋物線沿其對稱軸上下平移,使拋物線與線段EF總有公共點.試探究:拋物線向上最多可以平移多少個單位長度,向下最多可以平移多少個單位長度?

查看答案和解析>>

科目:初中數學 來源:2011年北京市石景山區(qū)中考數學二模試卷(解析版) 題型:解答題

已知:拋物線與x軸交于A(-2,0)、B(4,0),與y軸交于C(0,4).
(1)求拋物線頂點D的坐標;
(2)設直線CD交x軸于點E,過點B作x軸的垂線,交直線CD于點F,將拋物線沿其對稱軸上下平移,使拋物線與線段EF總有公共點.試探究:拋物線向上最多可以平移多少個單位長度,向下最多可以平移多少個單位長度?

查看答案和解析>>

同步練習冊答案