<thead id="2ew85"><xmp id="2ew85">
<table id="2ew85"><dfn id="2ew85"><code id="2ew85"></code></dfn></table>
<big id="2ew85"></big>
  • <nobr id="2ew85"><small id="2ew85"><nobr id="2ew85"></nobr></small></nobr>
    如圖,已知反比例函數(shù)的圖象經(jīng)過第二象限內(nèi)的點(diǎn)A(-1,m),AB⊥x軸于點(diǎn)B,△AOB的面積為2.若直線y=ax+b經(jīng)過點(diǎn)A,并且經(jīng)過反比例函數(shù)的圖象上另一點(diǎn)C(n,一2).
    (1)求直線y=ax+b的解析式;
    (2)設(shè)直線y=ax+b與x軸交于點(diǎn)M,求AM的長.

    【答案】分析:(1)根據(jù)點(diǎn)A的橫坐標(biāo)與△AOB的面積求出AB的長度,從而得到點(diǎn)A的坐標(biāo),然后利用待定系數(shù)法求出反比例函數(shù)解析式,再利用反比例函數(shù)解析式求出點(diǎn)C的坐標(biāo),根據(jù)點(diǎn)A與點(diǎn)C的坐標(biāo)利用待定系數(shù)法即可求出直線y=ax+b的解析式;
    (2)根據(jù)直線y=ax+b的解析式,取y=0,求出對(duì)應(yīng)的x的值,得到點(diǎn)M的坐標(biāo),然后求出BM的長度,在△ABM中利用勾股定理即可求出AM的長度.
    解答:解:(1)∵點(diǎn)A(-1,m)在第二象限內(nèi),
    ∴AB=m,OB=1,
    ∴S△ABO=AB•BO=2,
    即:×m×1=2,
    解得m=4,
    ∴A (-1,4),
    ∵點(diǎn)A (-1,4),在反比例函數(shù)的圖象上,
    ∴4=
    解得k=-4,
    ∴反比例函數(shù)為y=-,
    又∵反比例函數(shù)y=-的圖象經(jīng)過C(n,-2)
    ∴-2=,
    解得n=2,
    ∴C (2,-2),
    ∵直線y=ax+b過點(diǎn)A (-1,4),C (2,-2)

    解方程組得,
    ∴直線y=ax+b的解析式為y=-2x+2;

    (2)當(dāng)y=0時(shí),即-2x+2=0,
    解得x=1,
    ∴點(diǎn)M的坐標(biāo)是M(1,0),
    在Rt△ABM中,
    ∵AB=4,BM=BO+OM=1+1=2,
    由勾股定理得AM===
    點(diǎn)評(píng):本題主要考查了反比例函數(shù),待定系數(shù)法求函數(shù)解析式,勾股定理,綜合性較強(qiáng),但只要細(xì)心分析題目難度不大.
    練習(xí)冊(cè)系列答案
    相關(guān)習(xí)題

    科目:初中數(shù)學(xué) 來源: 題型:

    精英家教網(wǎng)如圖,已知反比例函數(shù)y=
    m
    x
    圖象與一次函數(shù)y=kx+b的圖象均經(jīng)過A(-1,4)和B(a,
    4
    5
    )兩點(diǎn),
    (1)求B點(diǎn)的坐標(biāo)及兩個(gè)函數(shù)的解析式;
    (2)若一次函數(shù)y=kx+b的圖象與x軸交于點(diǎn)C,求C點(diǎn)的坐標(biāo).

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來源: 題型:

    精英家教網(wǎng)如圖,已知反比例函數(shù)y=
    kx
    (k>0)的圖象經(jīng)過點(diǎn)A(2,m),過點(diǎn)A作AB⊥x軸于點(diǎn)B,且S△AOB=3.若一次函數(shù)y=ax+1的圖象經(jīng)過點(diǎn)A,并且與x軸相交于點(diǎn)C,求AO:AC的值.

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來源: 題型:

    精英家教網(wǎng)如圖,已知反比例函數(shù)y=
    kx
    的圖象與一次函數(shù)y=ax+b的圖象交于M(2,m)和N(-1,-4)兩點(diǎn).
    (1)求這兩個(gè)函數(shù)的解析式;
    (2)求△MON的面積;
    (3)請(qǐng)判斷點(diǎn)P(4,1)是否在這個(gè)反比例函數(shù)的圖象上,并說明理由.

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來源: 題型:

    如圖,已知反比例函數(shù)y1=
    kx
    和一次函數(shù)y2=ax+b的圖象相交于點(diǎn)A和點(diǎn)D,且點(diǎn)A的橫坐標(biāo)為1,點(diǎn)D的縱坐標(biāo)為-1.過點(diǎn)A作AB⊥x軸于點(diǎn)B,△AOB的面積為1.
    (1)求反比例函數(shù)和一次函數(shù)的解析式.
    (2)若一次函數(shù)y2=ax+b的圖象與x軸相交于點(diǎn)C,求∠ACO的度數(shù).
    (3)結(jié)合圖象直接寫出:當(dāng)y1>y2時(shí),x的取值范圍.

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來源: 題型:

    如圖,已知反比例函數(shù)y=
    k
    x
    的圖象經(jīng)過第二象限內(nèi)的點(diǎn)A(-1,m),AB⊥x軸于點(diǎn)B,△AOB的面積為2.若直線y=ax+b經(jīng)過點(diǎn)A,并且經(jīng)過反比例函數(shù)y=
    k
    x
    的圖象上另一點(diǎn)C(n,一2).
    (1)求直線y=ax+b的解析式;
    (2)設(shè)直線y=ax+b與x軸交于點(diǎn)M,求AM的長;
    (3)在雙曲線上是否存在點(diǎn)P,使得△MBP的面積為8?若存在請(qǐng)求P點(diǎn)坐標(biāo);若不存在請(qǐng)說明理由.

    查看答案和解析>>

    同步練習(xí)冊(cè)答案