【題目】如圖,正比例函數(shù)y=2x的圖象與反比例函數(shù)y= k x 的圖象交于A、B兩點(diǎn),過(guò)點(diǎn)A作AC垂直x軸于點(diǎn)C,連結(jié)BC.若△ABC的面積為2.

(1)求k的值;
(2)利用圖象求出不等式2x> 的解集.

【答案】
(1)

解:設(shè)點(diǎn)A的坐標(biāo)為(m,n).

∵點(diǎn)A在直線y=2x上,∴n=2m.

根據(jù)對(duì)稱(chēng)性可得OA=OB,

∴SABC=2SACO=2,

∴SACO=1,

m2m=1,

∴m=1(舍負(fù)),

∴點(diǎn)A的坐標(biāo)為(1,2),

∴k=1×2=2;


(2)

解:如圖,

由點(diǎn)A與點(diǎn)B關(guān)于點(diǎn)O成中心對(duì)稱(chēng)得點(diǎn)B(﹣1,﹣2).

結(jié)合圖象可得:不等式2x> 的解集為x>1或﹣1<x<0

;

解:如圖,

由點(diǎn)A與點(diǎn)B關(guān)于點(diǎn)O成中心對(duì)稱(chēng)得點(diǎn)B(﹣1,﹣2).

結(jié)合圖象可得:不等式2x> 的解集為x>1或﹣1<x<0

;

解:如圖,

由點(diǎn)A與點(diǎn)B關(guān)于點(diǎn)O成中心對(duì)稱(chēng)得點(diǎn)B(﹣1,﹣2).

結(jié)合圖象可得:不等式2x> 的解集為x>1或﹣1<x<0
【解析】(1)根據(jù)對(duì)稱(chēng)性可得OA=OB,從而可得△ACO的面積為1,由此可求出點(diǎn)A的坐標(biāo),然后運(yùn)用待定系數(shù)法就可解決問(wèn)題;(2)只需求出點(diǎn)B的坐標(biāo),并運(yùn)用數(shù)形結(jié)合的思想就可解決問(wèn)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某賓館有50個(gè)房間供游客居住,當(dāng)每個(gè)房間定價(jià)120元時(shí),房間會(huì)全部住滿(mǎn),當(dāng)每個(gè)房間每天的定價(jià)每增加10元時(shí),就會(huì)有一個(gè)房間空閑,如果游客居住房間,賓館需對(duì)每個(gè)房間每天支出20元的各種費(fèi)用,設(shè)每個(gè)房間定價(jià)增加10x元(x為整數(shù)).
(1)直接寫(xiě)出每天游客居住的房間數(shù)量y與x的函數(shù)關(guān)系式.
(2)設(shè)賓館每天的利潤(rùn)為W元,當(dāng)每間房?jī)r(jià)定價(jià)為多少元時(shí),賓館每天所獲利潤(rùn)最大,最大利潤(rùn)是多少?
(3)某日,賓館了解當(dāng)天的住宿的情況,得到以下信息:①當(dāng)日所獲利潤(rùn)不低于5000元,②賓館為游客居住的房間共支出費(fèi)用沒(méi)有超過(guò)600元,③每個(gè)房間剛好住滿(mǎn)2人.問(wèn):這天賓館入住的游客人數(shù)最少有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,Rt△ABC中,∠ACB=90°,∠A=30°,BC=2.將△ABC繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)一定角度后得△EDC,點(diǎn)D在AB邊上,斜邊DE交AC于點(diǎn)F,則圖中陰影部分面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】先化簡(jiǎn),再求值: ,其中x是不等式組 的一個(gè)整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+c與軸交于A、B兩點(diǎn),頂點(diǎn)C的縱坐標(biāo)為﹣2,現(xiàn)將拋物線向右平移2個(gè)單位,得到拋物線y=a1x2+b1x+c1 , 則下列結(jié)論:
①b>0;②a﹣b+c<0;③陰影部分的面積為4;④若c=﹣1,則b2=4a.
正確的是( 。

A.①③
B.②③
C.②④
D.③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,記m=|a﹣b+c|+|2a+b+c|,n=|a+b+c|+|2a﹣b﹣c|.則下列選項(xiàng)正確的是(  )
A.m<n
B.m>n
C.m=n
D.m、n的大小關(guān)系不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】市一中準(zhǔn)備組織學(xué)生及學(xué)生家長(zhǎng)到武漢大學(xué)參觀體驗(yàn),為了便于管理,所有人員到武漢必須乘坐在同一列動(dòng)車(chē)上;根據(jù)報(bào)名人數(shù),若都買(mǎi) 一等座單程火車(chē)票需2556元,若都買(mǎi)二等座單程火車(chē)票且花錢(qián)最少,則需1530元;已知學(xué)生家長(zhǎng)與教師的人數(shù)之比為2:1,安陸到武漢的動(dòng)車(chē)票價(jià)格(動(dòng) 車(chē)學(xué)生票只有二等座可以打6折)如下表所示:

(1)參加參觀體驗(yàn)的老師、家長(zhǎng)與學(xué)生各有多少人?
(2)由于各種原因,二等座火車(chē)票單程只能買(mǎi)x張(x小于參加參觀體驗(yàn)的人數(shù)),其余的須買(mǎi)一等座火車(chē)票,在保證每位參與人員都有座位坐的前提下,請(qǐng)你設(shè)計(jì)最經(jīng)濟(jì)的購(gòu)票方案,并寫(xiě)出購(gòu)買(mǎi)火車(chē)票的總費(fèi)用(單程)y與x之間的函數(shù)關(guān)系式.
(3)請(qǐng)你做一個(gè)預(yù)算,按第(2)小題中的購(gòu)票方案,購(gòu)買(mǎi)單程火車(chē)票的總費(fèi)用至少是多少錢(qián)?最多是多少錢(qián)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線y=﹣x2+bx+c與y軸相交于點(diǎn)A(0,3),與x正半軸相交于點(diǎn)B,對(duì)稱(chēng)軸是直線x=1

(1)求此拋物線的解析式以及點(diǎn)B的坐標(biāo).
(2)動(dòng)點(diǎn)M從點(diǎn)O出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿x軸正方向運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)N從點(diǎn)O出發(fā),以每秒3個(gè)單位長(zhǎng)度的速度沿y軸正方向運(yùn)動(dòng),當(dāng)N點(diǎn)到達(dá)A點(diǎn)時(shí),M、N同時(shí)停止運(yùn)動(dòng).過(guò)動(dòng)點(diǎn)M作x軸的垂線交線段AB于點(diǎn)Q,交拋物線于點(diǎn)P,設(shè)運(yùn)動(dòng)的時(shí)間為t秒.
①當(dāng)t為何值時(shí),四邊形OMPN為矩形.
②當(dāng)t>0時(shí),△BOQ能否為等腰三角形?若能,求出t的值;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,D、E為⊙O上位于AB異側(cè)的兩點(diǎn),連接BD并延長(zhǎng)至點(diǎn)C,使得CD=BD,連接AC交⊙O于點(diǎn)F,連接AE、DE、DF.
(1)證明:∠E=∠C;
(2)若∠E=55°,求∠BDF的度數(shù);
(3)設(shè)DE交AB于點(diǎn)G,若DF=4,cosB= ,E是 的中點(diǎn),求EGED的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案