【題目】如圖1,已知拋物線L:y=ax2+bx﹣1.5(a>0)與x軸交于點(diǎn)A(-1,0)和點(diǎn)B,頂點(diǎn)為M,對(duì)稱軸為直線l:x=1.
(1)直接寫出點(diǎn)B的坐標(biāo)及一元二次方程ax2+bx﹣1.5=0的解.
(2)求拋物線L的解析式及頂點(diǎn)M的坐標(biāo).
(3)如圖2,設(shè)點(diǎn)P是拋物線L上的一個(gè)動(dòng)點(diǎn),將拋物線L平移.使它的頂點(diǎn)移至點(diǎn)P,得到新拋物線L′,L′與直線l相交于點(diǎn)N.設(shè)點(diǎn)P的橫坐標(biāo)為m
①當(dāng)m=5時(shí),PM與PN有怎樣的數(shù)量關(guān)系?請(qǐng)說明理由.
②當(dāng)m為大于1的任意實(shí)數(shù)時(shí),①中的關(guān)系式還成立嗎?為什么?
③是否存在這樣的點(diǎn)P,使△PMN為等邊三角形?若存在.請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
【答案】(1)x1=﹣1,x2=3;(2)y=0.5x2﹣x﹣1.5,頂點(diǎn)M的坐標(biāo)為(1,﹣2);(3)①PM=PN;理由見解析;②PM=PN仍然成立.理由見解析;③點(diǎn)P的坐標(biāo)為(,﹣).
【解析】
(1)由y=ax2+bx-1.5(a>0)與x軸交于點(diǎn)A(-1,0)和點(diǎn)B,對(duì)稱軸為直線l:x=1,根據(jù)拋物線的對(duì)稱性可求得B點(diǎn)坐標(biāo),根據(jù)二次函數(shù)與一元二次方程的關(guān)系可得A、B兩點(diǎn)橫坐標(biāo)的值即為一元二次方程ax2+bx-1.5=0的解;
(2)把A、B兩點(diǎn)的坐標(biāo)代入y=ax2+bx-1.5,得到關(guān)于a、b的二元一次方程組,解方程組求出a、b的值,得到拋物線L的解析式,再利用配方法化為頂點(diǎn)式,即可得到頂點(diǎn)M的坐標(biāo);
(3)作PC⊥l于點(diǎn)C.
①根據(jù)點(diǎn)P是拋物線L上的一個(gè)動(dòng)點(diǎn)及(2)中所求解析式,當(dāng)m=5時(shí),把x=5代入y=(x-1)2-2,求出y=6,得到P點(diǎn)坐標(biāo),從而得到點(diǎn)C的坐標(biāo),由點(diǎn)P為新拋物線L′的頂點(diǎn)及解析式平移的規(guī)律得出L′的解析式,再求出點(diǎn)N的坐標(biāo),通過計(jì)算得出CM=CN,然后根據(jù)線段垂直平分線的性質(zhì)即可得出PM=PN;
②根據(jù)點(diǎn)P是拋物線L上的一個(gè)動(dòng)點(diǎn)及(2)中所求解析式,得出點(diǎn)P的坐標(biāo)為(m,m2-m-1.5),從而得到點(diǎn)C的坐標(biāo),由點(diǎn)P為新拋物線L′的頂點(diǎn)及解析式平移的規(guī)律得出L′的解析式為y=(x-m)2+m2-m-1.5,再求出點(diǎn)N的坐標(biāo),通過計(jì)算得出CM=CN,然后根據(jù)線段垂直平分線的性質(zhì)即可得出PM=PN;
③當(dāng)△PMN為等邊三角形時(shí),根據(jù)等腰三角形三線合一的性質(zhì)得出PC平分∠MPN,即∠CPN=30°,利用正切函數(shù)定義得出=tan30°,即m2-m+1.5=(m-1),解方程求出m的值,進(jìn)而得到點(diǎn)P的坐標(biāo).
(1)如圖1,
∵y=ax2+bx-1.5(a>0)與x軸交于點(diǎn)A(-1,0)和點(diǎn)B,對(duì)稱軸為直線l:x=1,
∴點(diǎn)A和點(diǎn)B關(guān)于直線l:x=1對(duì)稱,
∴點(diǎn)B(3,0),
∴一元二次方程ax2+bx-1.5=0的解為x1=-1,x2=3;
(2)把A(-1,0),B(3,0)代入y=ax2+bx-1.5,
得,
解得,
拋物線L的解析式為y=x2-x-1.5,
配方得,y=(x-1)2-2,
所以頂點(diǎn)M的坐標(biāo)為(1,-2);
(3)如圖2,作PC⊥l于點(diǎn)C.
①∵y=(x-1)2-2,
∴當(dāng)m=5,即x=5時(shí),y=6,
∴P(5,6),
∴此時(shí)L′的解析式為y=(x-5)2+6,點(diǎn)C的坐標(biāo)是(1,6).
∵當(dāng)x=1時(shí),y=14,
∴點(diǎn)N的坐標(biāo)是(1,14).
∵CM=6-(-2)=8,CN=14-6=8,
∴CM=CN.
∵PC垂直平分線段MN,
∴PM=PN;
②PM=PN仍然成立.
由題意有點(diǎn)P的坐標(biāo)為(m,m2-m-1.5).
∵L′的解析式為y=(x-m)2+m2-m-1.5,
∴點(diǎn)C的坐標(biāo)是(1,m2-m-1.5),
∴CM=m2-m-1.5+2=m2-m+.
∵在L′的解析式y=(x-m)2+m2-m-1.5中,
∴當(dāng)x=1時(shí),y=m2-2m-1,
∴點(diǎn)N的坐標(biāo)是(1,m2-2m-1),
∴CN=(m2-2m-1)-(m2-m-1.5)=m2-m+,
∴CM=CN.
∵PC垂直平分線段MN,
∴PM=PN;
③存在這樣的點(diǎn)P,使△PMN為等邊三角形.
若=tan30°,則m2-m+=(m-1),
解得m=,
所以點(diǎn)P的坐標(biāo)為(,-).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一間攝影展覽廳,其東、西面各有一個(gè)入口A、B,南面為出口C,北面分別有兩個(gè)出口D、E,攝影愛好者鄭浩任選一個(gè)入口進(jìn)入展覽廳,參觀結(jié)束后,任選一個(gè)出口離開。
(1)鄭浩從進(jìn)入到離開共有多少種可能的結(jié)果?請(qǐng)畫出樹形圖;
(2)求出鄭浩從入口A進(jìn)入展覽廳并從北面出口離開的概率。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分8分)東營(yíng)市為進(jìn)一步加強(qiáng)和改進(jìn)學(xué)校體育工作,切實(shí)提高學(xué)生體質(zhì)健康水平,決定推進(jìn)“一校一球隊(duì)、一級(jí)一專項(xiàng)、一人一技能”活動(dòng)計(jì)劃.某校決定對(duì)學(xué)生感興趣的球類項(xiàng)目(A:足球, B:籃球, C:排球,D:羽毛球,E:乒乓球)進(jìn)行問卷調(diào)查,學(xué)生可根據(jù)自己的喜好選修一門,李老師對(duì)某班全班同學(xué)的選課情況進(jìn)行統(tǒng)計(jì)后,制成了兩幅不完整的統(tǒng)計(jì)圖(如圖).
(1)求出該班學(xué)生人數(shù);
(2)將統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若該校共有學(xué)生3500名,請(qǐng)估計(jì)有多少人選修足球?
(4)該班班委5人中,1人選修籃球,3人選修足球,1人選修排球,李老師要從這5人中任選2人了解他們對(duì)體育選修課的看法,請(qǐng)你用列表或畫樹狀圖的方法,求選出的2人恰好1人選修籃球,1人選修足球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是等腰△ABC底邊BC上的高,點(diǎn)O是AC中點(diǎn),延長(zhǎng)DO到E
使AE∥BC,連接AE。
(1)求證:四邊形ADCE是矩形;
(2)①若AB=17,BC=16,則四邊形ADCE的面積= ;
②若AB=10,則BC= 時(shí),四邊形ADCE是正方形。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校開展了以“責(zé)任、感恩”為主題的班隊(duì)活動(dòng),活動(dòng)結(jié)束后,初三(2)班數(shù)學(xué)興趣小組提出了5個(gè)主要觀點(diǎn)并在本班學(xué)生中進(jìn)行了調(diào)查(要求每位同學(xué)只選自己最認(rèn)可的一項(xiàng)觀點(diǎn)),并制成了如下扇形統(tǒng)計(jì)圖,
(1)該班有 人,學(xué)生選擇“和諧”觀點(diǎn)的有 人,在扇形統(tǒng)計(jì)圖中,“和諧”觀點(diǎn)所在扇形區(qū)域的圓心角是 度;
(2)如果該校有360名初三學(xué)生,利用樣本估計(jì)選擇“感恩”觀點(diǎn)的初三學(xué)生約有 人;
(3)如果數(shù)學(xué)興趣小組在這5個(gè)主要觀點(diǎn)中任選兩項(xiàng)觀點(diǎn)在全校學(xué)生中進(jìn)行調(diào)查,求恰好選到“和諧”和“感恩”觀點(diǎn)的概率(用樹狀圖或列表法分析解答).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了增強(qiáng)學(xué)生體質(zhì),決定開放以下球類活動(dòng)項(xiàng)目:A.籃球、B.乒乓球、C.排球、D.足球.為了解學(xué)生最喜歡哪一種活動(dòng)項(xiàng)目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計(jì)圖(如圖①,圖②),請(qǐng)回答下列問題:
(1)這次被調(diào)查的學(xué)生共有多少人?
(2)請(qǐng)你將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若該校共有學(xué)生1900人,請(qǐng)你估計(jì)該校喜歡D項(xiàng)目的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C為⊙O上一點(diǎn),AE和過點(diǎn)C的切線互相垂直,垂足為E,AE交⊙O于點(diǎn)D,直線EC交AB的延長(zhǎng)線于點(diǎn)P,連接AC,BC,PB:PC=1:2.
(1)求證:AC平分∠BAD;
(2)探究線段PB,AB之間的數(shù)量關(guān)系,并說明理由;
(3)若AD=3,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖六個(gè)完全相同的小長(zhǎng)方形拼成了一個(gè)大長(zhǎng)方形,AB是其中一個(gè)小長(zhǎng)方形對(duì)角線,請(qǐng)?jiān)诖箝L(zhǎng)方形中完成下列畫圖,要求:僅用無刻度直尺;保留必要的畫圖痕跡.
在圖中畫一個(gè)角,使點(diǎn)A或點(diǎn)B是這個(gè)角的頂點(diǎn),且AB為這個(gè)角的一邊;
在圖中畫出線段AB的垂直平分線,并簡(jiǎn)要說明畫圖的方法不要求證明______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,平行四邊形的頂點(diǎn)在反比例函數(shù)()的圖象上,點(diǎn)在軸上,對(duì)角線軸,若兩點(diǎn)的橫坐標(biāo)分別為1,2,的長(zhǎng)為,則的值為____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com