【題目】如圖1,在△ABC中,D是AB上一點,已知AC=10,AC2=AD·AB.
(1)證明△ACD∽△ABC.
(2)如圖2,過點C作CE∥AB,且CE=6,連結(jié)DE交BC于點F;
①若四邊形ADEC是平行四邊形,求的值;
②設(shè)AD=x,=y,求y關(guān)于x的函數(shù)表達式.
【答案】(1)見解析;(2)①;②
【解析】
(1)由AC2=AD·AB得,再結(jié)合∠A=∠A即可得證;
(2)①由平行四邊形的性質(zhì)可得AD=CE=6,DE∥AC,可證△BDF∽△BAC,可求解;
②通過△ACD∽△ABC,可得BC=,由平行線分線段成比例可得,代入可求解.
(1)證明:∵AC2=AD·AB,
∴,
又∵∠A=∠A,
∴△ACD∽△ABC;
(2)解:①∵四邊形ADEC是平行四邊形,
∴AD=CE=6,DE∥AC,
∵AC=10,AC2=ADAB,
∴AB=,
∵DE∥AC,
∴△BDF∽△BAC,
∴;
②∵AC=10,AD=x,AC2=ADAB,
∴AB=,
∵△ACD∽△ABC,
∴,
∴BC=,
∵CE∥AB,
∴,
∴
∴,
∴
∴.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A在反比例函數(shù)(x<0)的圖象上,連接OA,分別以點O和點A為圓心,大于的長為半徑作弧,兩弧相交于B,C兩點,過B,C兩點作直線交x軸于點D,連接AD.若∠AOD=30°,△AOD的面積為2,則k的值為( 。
A.﹣6B.6C.﹣2D.﹣3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以等邊△ABC的邊BC為直徑作⊙O,分別交AB、AC于點D、E,過點D作DF⊥AC交AC于點F.
(1)求證:DF是⊙O的切線;
(2)若等邊△ABC的邊長為8,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了解學(xué)生疫情期間一天在線學(xué)習(xí)時長,進行了一次隨機問卷調(diào)查(每人只能選擇其中一項),并將調(diào)查數(shù)據(jù)整理后繪成如下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中信息解答下列問題:
(1)求參與問卷調(diào)查的總?cè)藬?shù).
(2)補全條形統(tǒng)計圖,并求出一天在線學(xué)習(xí)“5﹣7個小時”的扇形圓心角度數(shù).
(3)若該校共有學(xué)生1800名,試估計全校一天在線學(xué)習(xí)“7小時以上”的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某地區(qū)中學(xué)生一周課外閱讀時長的情況,隨機抽取部分中學(xué)生進行調(diào)查,根據(jù)調(diào)查結(jié)果,將閱讀時長分為四類:2小時以內(nèi),2~4小時(含2小時),4~6小時(含4小時),6小時及以上,并繪制了如圖所示尚不完整的統(tǒng)計圖.
(1)本次調(diào)查共隨機抽取了 名中學(xué)生,其中課外閱讀時長“2~4小時”的有 人;
(2)扇形統(tǒng)計圖中,課外閱讀時長“4~6小時”對應(yīng)的圓心角度數(shù)為 °;
(3)若該地區(qū)共有20000名中學(xué)生,估計該地區(qū)中學(xué)生一周課外閱讀時長不少于4小時的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明是一名健步走運動的愛好者,他用手機軟件記錄了他近期健步走的步數(shù)(單位:萬步),繪制出如下的統(tǒng)計圖①和統(tǒng)計圖②,請根據(jù)相關(guān)信息,解答下列問題:
(Ⅰ)本次記錄的總天數(shù)為_____________,圖①中m的值為______________;
(Ⅱ)求小名近期健步走步數(shù)的平均數(shù)、眾數(shù)和中位數(shù);
(Ⅲ)根據(jù)樣本數(shù)據(jù),若小明堅持健步走一年(記為365天),試估計步數(shù)為1.1萬步的天數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個頂點坐標(biāo)分別為A(3,2)、B(3,5)、C(1,2).
⑴在平面直角坐標(biāo)系中畫出△ABC關(guān)于原點對稱的△A1B1C1;
⑵把△ABC繞點A順時針旋轉(zhuǎn)一定的角度,得圖中的△AB2C2,點C2在AB上.請寫出:
①旋轉(zhuǎn)角為 度;
②點B2的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形的兩條對稱軸為坐標(biāo)軸,點的坐標(biāo)為.一張透明紙上畫有一個點和一條拋物線,平移透明紙,使點與點重合,此時拋物線的函數(shù)表達式為,再次平移透明紙,使點與點重合,則該拋物線的函數(shù)表達式變?yōu)?/span>_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為豐富同學(xué)們的校園生活,某校積極開展了體育類、文藝類、文化類等形式多樣的社團活動(每人僅限參加一項).李老師在九年級隨機抽取了2個班級,對這2個班級參加體育類社團活動的人數(shù)情況進行了統(tǒng)計,并繪制了下面的統(tǒng)計圖.已知這2個班級共有的學(xué)生參加“足球”項目,且扇形統(tǒng)計圖中“足球”項目扇形圓心角為.
(1)這2個班參加體育類社團活動人數(shù)為______;
(2)請在圖中將表示“棒球”項目的圖形補充完整;
(3)若該校九年級共有600名學(xué)生,請你根據(jù)上述信息估計該校九年級共有多少名學(xué)生參加“棒球”項目?
(4)小明和小剛都是這2個班的學(xué)生,且都參加了體育類社團活動,請用列表或樹狀圖法求小明和小剛都參加足球社團的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com