【題目】(2016廣西省南寧市第23題)已知四邊形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的兩邊分別與射線CB,DC相交于點(diǎn)E,F(xiàn),且∠EAF=60°.
(1)如圖1,當(dāng)點(diǎn)E是線段CB的中點(diǎn)時(shí),直接寫(xiě)出線段AE,EF,AF之間的數(shù)量關(guān)系;
(2)如圖2,當(dāng)點(diǎn)E是線段CB上任意一點(diǎn)時(shí)(點(diǎn)E不與B、C重合),求證:BE=CF;
(3)如圖3,當(dāng)點(diǎn)E在線段CB的延長(zhǎng)線上,且∠EAB=15°時(shí),求點(diǎn)F到BC的距離.
【答案】(1)、AE=EF=AF;(2)、證明過(guò)程見(jiàn)解析;(3)、3-
【解析】
試題分析:(1)、結(jié)論AE=EF=AF.只要證明AE=AF即可證明△AEF是等邊三角形;(2)、欲證明BE=CF,只要證明△BAE≌△CAF即可;(3)、過(guò)點(diǎn)A作AG⊥BC于點(diǎn)G,過(guò)點(diǎn)F作FH⊥EC于點(diǎn)H,根據(jù)FH=CFcos30°,因?yàn)镃F=BE,只要求出BE即可解決問(wèn)題.
試題解析:(1)、結(jié)論AE=EF=AF.
理由:如圖1中,連接AC, ∵四邊形ABCD是菱形,∠B=60°, ∴AB=BC=CD=AD,∠B=∠D=60°,
∴△ABC,△ADC是等邊三角形, ∴∠BAC=∠DAC=60° ∵BE=EC, ∴∠BAE=∠CAE=30°,AE⊥BC,
∵∠EAF=60°, ∴∠CAF=∠DAF=30°, ∴AF⊥CD, ∴AE=AF(菱形的高相等),
∴△AEF是等邊三角形, ∴AE=EF=AF.
(2)、如圖2中,∵∠BAC=∠EAF=60°, ∴∠BAE=∠CAE,
在△BAE和△CAF中,, ∴△BAE≌△CAF, ∴BE=CF.
(3)、過(guò)點(diǎn)A作AG⊥BC于點(diǎn)G,過(guò)點(diǎn)F作FH⊥EC于點(diǎn)H, ∵∠EAB=15°,∠ABC=60°, ∴∠AEB=45°,
在RT△AGB中,∵∠ABC=60°AB=4, ∴BG=2,AG=2,在RT△AEG中,∵∠AEG=∠EAG=45°,
∴AG=GE=2, ∴EB=EG﹣BG=2﹣2, ∵△AEB≌△AFC,
∴AE=AF,EB=CF=2﹣2,∠AEB=∠AFC=45°, ∵∠EAF=60°,AE=AF, ∴△AEF是等邊三角形,
∴∠AEF=∠AFE=60° ∵∠AEB=45°,∠AEF=60°, ∴∠CEF=∠AEF﹣∠AEB=15°,
在RT△EFH中,∠CEF=15°, ∴∠EFH=75°, ∵∠AFE=60°, ∴∠AFH=∠EFH﹣∠AFE=15°,
∵∠AFC=45°,∠CFH=∠AFC﹣∠AFH=30°, 在RT△CHF中,∵∠CFH=30°,CF=2﹣2,
∴FH=CFcos30°=(2﹣2)=3﹣. ∴點(diǎn)F到BC的距離為3﹣.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=7,AC=8,BC=9,則這個(gè)三角形是( 。
A. 銳角三角形B. 直角三角形C. 鈍角三角形D. 等腰三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圓桌面(桌面中間有一個(gè)直徑為0.4m的圓洞)正上方的燈泡(看作一個(gè)點(diǎn))發(fā)出的光線照射平行于地面的桌面后,在地面上形成如圖所示的圓環(huán)形陰影.已知桌面直徑為1.2m,桌面離地面1m,若燈泡離地面3m,則地面圓環(huán)形陰影的面積是( )
A.0.324πm2B.0.288πm2C.1.08πm2D.0.72πm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一些數(shù)排列成下表:
第1列 | 第2列 | 第3列 | 第4列 | |
第1行 | 1 | 4 | 5 | 10 |
第2行 | 4 | 8 | 10 | 12 |
第3行 | 9 | 12 | 15 | 14 |
試探索:(請(qǐng)直接寫(xiě)出答案)
(1)第10行第2列的數(shù)是多少?
(2)數(shù)81所在的行和列分別是多少?
(3)數(shù)100所在的行和列分別是多少
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,□ABCD中,用直尺和圓規(guī)作∠BAD的平分線AG交BC于點(diǎn)E,若BF=6,AB=5,則AE的長(zhǎng)為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀后回答問(wèn)題:
計(jì)算(-)÷(-15)×(-)
解:原式=-÷[(-15)×(-)] ①
=-÷1 ②
=- ③
()上述的解法是否正確?答:_________________________
若有錯(cuò)誤,在哪一步?答:_________________________(填代號(hào))
錯(cuò)誤的原因是:___________________________________
(2)這個(gè)計(jì)算題的正確答案應(yīng)該是:______________________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】寫(xiě)出下列已知點(diǎn)關(guān)于原點(diǎn)對(duì)稱(chēng)點(diǎn)的坐標(biāo).
A(-2,3) B(5,-5) C(-3,-7) D(3,-2) E(4,6)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】先化簡(jiǎn)再求值
(1)-(9x3-4x2+5)-(-3-8x3+3x2),其中x=-2;
(2)5xy﹣[x2+4xy﹣y2﹣(x2+2xy﹣2y2)]其中, .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com