已知:如圖1,點(diǎn)C為線段AB上一點(diǎn),△ACM,△CBN都是等邊三角形,AN交MC于點(diǎn)E,BM交CN于點(diǎn)F.
(1)求證:AN=BM;
(2)求證:△CEF為等邊三角形;
(3)將△ACM繞點(diǎn)C按逆時(shí)針?lè)较蛐D(zhuǎn)90°,其他條件不變,在圖2中補(bǔ)出符合要求的圖形,并判斷第(1)、(2)兩小題的結(jié)論是否仍然成立(不要求證明).
(1)證明:∵△ACM,△CBN是等邊三角形,
∴AC=MC,BC=NC,∠ACM=60°,∠NCB=60°,
∴∠ACM+∠MCN=∠NCB+∠MCN,
即:∠ACN=∠MCB,
在△ACN和△MCB中,
AC=MC,∠ACN=∠MCB,NC=BC,
∴△ACN≌△MCB(SAS).
∴AN=BM.
(2)證明:∵△ACN≌△MCB,
∴∠CAN=∠CMB.
又∵∠MCF=180°﹣∠ACM﹣∠NCB=180°﹣60°﹣60°=60°,
∴∠MCF=∠ACE.
在△CAE和△CMF中
∠CAE=∠CMF,CA=CM,∠ACE=∠MCF,
∴△CAE≌△CMF(ASA).
∴CE=CF.
∴△CEF為等腰三角形.
又∵∠ECF=60°,
∴△CEF為等邊三角形.
(3)解:如右圖,
∵△CMA和△NCB都為等邊三角形,
∴MC=CA,CN=CB,∠MCA=∠BCN=60°,
∴∠MCA+∠ACB=∠BCN+∠ACB,即∠MCB=∠ACN,
∴△CMB≌△CAN,
∴AN=MB,
結(jié)論1成立,結(jié)論2不成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在10×10的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)都為1,網(wǎng)格中有一個(gè)格點(diǎn)△ABC(即三角形的頂點(diǎn)都在格點(diǎn)上).
(1)在圖中作出△ABC關(guān)于直線l對(duì)稱(chēng)的△A1B1C1;(要求:A與A1,B與B1,C與C1相對(duì)應(yīng))
(2)在(1)問(wèn)的結(jié)果下,連接BB1,CC1,求四邊形BB1C1C的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在△ABC中,AB=AC,點(diǎn)D為BC邊的中點(diǎn),∠BAD=20°,則∠C= _________ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,△ABD與△AEC都是等邊三角形,AB≠AC.下列結(jié)論中,正確的是 _________ .
①BE=CD;②∠BOD=60°;③∠BDO=∠CEO.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,△ABC中,∠ACB=90°,CD是高,∠A=30°,則BD與AB的關(guān)系是( )
A. BD=AB B. BD=AB C. BD=AB D. BD=AB
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
若點(diǎn)P在第二象限,且點(diǎn)P到x軸、y軸的距離分別是4、3,則點(diǎn)P的坐標(biāo)為( ).
A. (4,-3) B. (3,-4) C. (-3,4) D. (-4,3)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com