如圖,在直角梯形ABCD中,AB∥CD,∠ABC=90°,AB=4,BC=,CD=9.
(1)在BC邊上找一點O,過O點作OP⊥BC交AD于P,且OP2=AB•DC.求BO的長;
(2)以BC所在直線為x軸,OP所在直線為y軸,建立平面直角坐標系,求經(jīng)過A、O、D三點的拋物線的解析式,并畫出引拋物線的草圖;
(3)在(2)中的拋物線上,連接AO、DO,證明:△AOD為直角三角形;過P點任作一直線與拋物線相交于A′(x1,y1),D′(x2,y2)兩點,連接A′O、B′O,試問:△A′O′D′還為直角三角形嗎?請說明理由.

【答案】分析:(1)本題可通過構建相似三角形來求解,先求出OP的長,然后過A作AF∥BC交CD于F,交OP于E,根據(jù)AB、OP、CD的長可求出DF、PE的長,然后根據(jù)△APE和△ADF相似可求出AE即BO的長.
(2)在(1)中求出了BO的長,即可得出OC的長,那么A、D的坐標就可求得.然后用待定系數(shù)法可求出拋物線的解析式.
(3)①證∠AOD=90°,可連接OA,OD通過證△AOB∽△ODC來得出∠AOB=∠ODC,進而求得∠AOB+∠DOC=∠ODC+∠DOC=90°,以此來證得∠AOD=90°.證兩三角形相似時,可根據(jù)A、D的坐標求出AB,OB,OC,CD的長,然后證他們對應成比例即可.
②方法同①,可設直線的解析式為y=kx+b(k≠0),求出與拋物線的交點然后同①.
解答:解:(1)在BC上取一點O,作OP⊥BC交AD于點P.
由OP2=BA•CD=4×9=36,得OP=6(取正),
過點A作直線AE∥BC,交OP于E,交CD于F.則BO=AE=.(3分)

(2)根據(jù)題意建立直角坐標系,如圖所示,則A(),B(),
O(0,0),C(),D(),
過A、O、D三點的拋物線的解析式y(tǒng)=ax2+bx+c滿足
解得
∴拋物線的解析式為y=x2

(3)連接OA、OD,在Rt△AOB和Rt△ODC中,
=
,
∴Rt△AOB∽Rt△ODC,
∴∠AOD=180°-90°=90°,
∴△AOD為直角三角形.
點評:本題主要考查了直角梯形的性質、二次函數(shù)解析式的確定、相似三角形的判定和性質等知識點.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

20、如圖,在直角梯形ABCD中,AD∥BC,CD⊥BC,E為BC邊上的點.將直角梯形ABCD沿對角線BD折疊,使△ABD與△EBD重合(如圖中陰影所示).若∠A=130°,AB=4cm,則梯形ABCD的高CD≈
3.1
cm.(結果精確到0.1cm)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在直角梯形ABCD中,AB∥DC,∠D=90°,AC⊥BC,AB=10cm,BC=6cm,F(xiàn)點以2cm/秒的速度在線段AB上由A向B勻速運動,E點同時以1cm/秒的速度在線段BC上由B向C勻速運動,設運動時間為t秒(0<t<5).
(1)求證:△ACD∽△BAC;
(2)求DC的長;
(3)設四邊形AFEC的面積為y,求y關于t的函數(shù)關系式,并求出y的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1998•大連)如圖,在直角梯形ABCD中.AD∥BC,DC⊥BC,且BC=3AD.以梯形的高AE為直徑的⊙O交AB于點F,交CD于點G、H.過點F引⊙O的切線交BC于點N.
(1)求證:BN=EN;
(2)求證:4DH•HC=AB•BF;
(3)設∠GEC=α.若tan∠ABC=2,求作以tanα、cotα為根的一元二次方程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在直角梯形ABCD中,DC∥AB,∠ADC=90°,AB=3a,CD=2a,AD=2,點E、F分別是腰AD、BC上的動點,點G在AB上,且四邊形AEFG是矩形.設FG=x,矩形AEFG的面積為y.
(1)求y與x之間的函數(shù)關式,并寫出自變量x的取值范圍;
(2)在腰BC上求一點F,使梯形ABCD的面積是矩形AEFG的面積的2倍,并求出此時BF的長;
(3)當∠ABC=60°時,矩形AEFG能否為正方形?若能,求出其邊長;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在直角梯形ABCD中,AB∥CD,∠C=90°,AB=6cm,CD=10cm,AD=5cm,動點P、Q分別從點A、C同時出發(fā),點P以2cm/s的速度向點B移動,點Q以1cm/s的速度向點D移動,當一個動點到達終點時另一個動點也隨之停止運動.
(1)經(jīng)過幾秒鐘,點P、Q之間的距離為5cm?
(2)連接PD,是否存在某一時刻,使得PD恰好平分∠APQ?若存在,求出此時的移動時間;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案