如圖,△ABC中,∠C=90°,AC=5cm,BC=12cm,⊙O分別切AC,BC于點(diǎn)D,E,圓心O在AB上,則⊙O的半徑r為

A.2cm      B.4cm     C.cm         D.cm

 

【答案】

C.

【解析】

試題分析:在Rt△ABC中,,連接OD和OE,設(shè)⊙O的半徑為r,根據(jù)切線的性質(zhì)知,OE⊥CD,OD⊥AC,又因?yàn)椤螩=90°,所以CD=OE=r,AD=5-r,可證△AOD∽△ABC,進(jìn)而可得:,

.在Rt△ODA中,,解得,(不合題意,舍去).故選C.

考點(diǎn):1、切線的性質(zhì);2、勾股定理.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

26、已知:如圖,△ABC中,點(diǎn)D在AC的延長線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點(diǎn)在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點(diǎn)D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫∠DAC的平分線AE交BC于點(diǎn)E,則AE與BC有什么位置關(guān)系,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案