【題目】如圖,在△ACB中,∠ACB=90゜,CD⊥AB于D.
(1)求證:∠ACD=∠B;
(2)若AF平分∠CAB分別交CD、BC于E、F,求證:∠CEF=∠CFE.
【答案】(1)證明見解析;(2)證明見解析.
【解析】
試題分析:(1)由于∠ACD與∠B都是∠BCD的余角,根據(jù)同角的余角相等即可得證;
(2)根據(jù)直角三角形兩銳角互余得出∠CFA=90°-∠CAF,∠AED=90°-∠DAE,再根據(jù)角平分線的定義得出∠CAF=∠DAE,然后由對頂角相等的性質(zhì),等量代換即可證明∠CEF=∠CFE.
試題解析:(1)∵∠ACB=90゜,CD⊥AB于D,
∴∠ACD+∠BCD=90°,∠B+∠BCD=90°,
∴∠ACD=∠B;
(2)在Rt△AFC中,∠CFA=90°-∠CAF,
同理在Rt△AED中,∠AED=90°-∠DAE.
又∵AF平分∠CAB,
∴∠CAF=∠DAE,
∴∠AED=∠CFE,
又∵∠CEF=∠AED,
∴∠CEF=∠CFE.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等邊△ABC中,點D,E分別在邊BC,AB上,且BD=AE,AD與CE交于點F.
(1)求證:AD=CE;
(2)求∠DFC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】第五次全國人口普查結(jié)果顯示,我國的總?cè)丝谝堰_到1300000000人,用科學記數(shù)法表示這個數(shù),結(jié)果正確的是( )
A. 0.13×1010
B. 1.3×109
C. 13×108
D. 130×107
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:三邊長和面積都是整數(shù)的三角形稱為“整數(shù)三角形”.
數(shù)學學習小組的同學從32根等長的火柴棒(每根長度記為1個單位)中取出若干根,首尾依次相接組成三角形,進行探究活動.
小亮用12根火柴棒,擺成如圖所示的“整數(shù)三角形”
小穎分別用24根和30根火柴棒擺出直角“整數(shù)三角形”
小輝受到小亮、小穎的啟發(fā),分別擺出三個不同的等腰“整數(shù)三角形”.
(1)請你畫出小穎和小輝擺出的“整數(shù)三角形”的示意圖.
(2)你能否也從中取出若干根,擺出一個非特殊(既非直角三角形,也非等腰三角形)“整數(shù)三角形”.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有一塊直角三角板DEF放置在△ABC上,三角板DEF的兩條直角邊DE、DF恰好分別經(jīng)過點B、C.△ABC中,∠A=50°,求∠DBA+∠DCA的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】衢州新聞網(wǎng)2月16日訊,2013年春節(jié)“黃金周”全市接待游客總數(shù)為833100人次.將數(shù)833100用科學記數(shù)法表示應(yīng)為( )
A.0.833×106
B.83.31×105
C.8.331×105
D.8.331×104
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知⊙O的半徑為4,CD為⊙O的直徑,AC為⊙O的弦,B為CD延長線上的一點,∠ABC=30°,且AB=AC。
(1)求證:AB是⊙O的切線;
(2)求弦AC的長;
(3)求圖中陰影部分的面積。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面材料,并解答問題.
將分式拆分成一個整式與一個分式(分子為整數(shù))的和的形式.
解:由分母為x2-1,可設(shè)x4+x2-3=(x2-1)(x2+a)+b.
則x4+x2-3=(x2-1)(x2+a)+b=x4-x2+ax2-a+b=x4+(a-1)x2-a+b
∴,∴
∴
這樣,分式被拆分成了一個整式x2+2與一個分式-的和.
根據(jù)上述作法,將分式拆分成一個整式與一個分式(分子為整數(shù))的和的形式。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com