【題目】 如圖,兩個等邊△ABD,△CBD的邊長均為1,將△ABD沿AC方向向右平移到△A′B′D′的位置,得到圖2,則陰影部分的周長為( )
A.1 B.2 C.2.5 D.3
【答案】B.
【解析】
試題分析:先標(biāo)注字母,然后根據(jù)平移的性質(zhì)判定△DEG,△BFH,△D′EM,△B′NF是等邊三角形,根據(jù)等邊三角形的每一條邊都相等可得陰影部分的周長等于BD+B′D′,代入數(shù)據(jù)進行計算即可得解.
試題解析:如圖,∵兩個等邊△ABD,△CBD的邊長均為1,將△ABD沿AC方向向右平移到△A′B′D′的位置,
∴△DEG,△BFH,△D′EM,△B′NF是等邊三角形,
∴GE=DG,HF=BH,F(xiàn)N=B′N,EM=D′M,
∴陰影部分的周長=GE+GH+HF+FN+MN+EM=DG+MN+BH+B′N+MN+D′M=BD+B′D′=1+1=2.
故選B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè) A(﹣2,y ),B(1,y ),C(2,y )是拋物線 y=(m2+1)(x-1)2-3 上的三點,則y1,y2,y3的大小關(guān)系為( )
A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點 P 到⊙O 上的點的最大距離是 7 cm,最小距離是 1 cm,則⊙O的半徑是
A.4 cmB.3cmC.4cm 或 3cmD.6cm或3cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了提高科技創(chuàng)新意識,我市某中學(xué)在“2016年科技節(jié)”活動中舉行科技比賽,包括“航!薄ⅰ皺C器人”、“環(huán)保”、“建!彼膫類別(每個學(xué)生只能參加一個類別的比賽),各類別參賽人數(shù)統(tǒng)計如圖:
請根據(jù)以上信息,解答下列問題:
(1)全體參賽的學(xué)生共有 人,“建模”在扇形統(tǒng)計圖中的圓心角是 °;
(2)將條形統(tǒng)計圖補充完整;
(3)在比賽結(jié)果中,獲得“環(huán)保”類一等獎的學(xué)生為1名男生和2名女生,獲得“建!鳖愐坏泉劦膶W(xué)生為1名男生和1名女生,現(xiàn)從這兩類獲得一等獎的學(xué)生中各隨機選取1名學(xué)生參加市級“環(huán)保建!笨疾旎顒,問選取的兩人中恰為1男生1女生的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB∥CD,現(xiàn)將一直角三角形PMN放入圖中,其中∠P=90°,PM交AB于點E,PN交CD于點F
(1)當(dāng)△PMN所放位置如圖①所示時,則∠PFD與∠AEM的數(shù)量關(guān)系為;
(2)當(dāng)△PMN所放位置如圖②所示時,求證:∠PFD﹣∠AEM=90°;
(3)在(2)的條件下,若MN與CD交于點O,且∠DON=30°,∠PEB=15°,求∠N的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點M(﹣2,1)關(guān)于y軸的對稱點N的坐標(biāo)是( 。
A. (2,1) B. (1,﹣2) C. (﹣2,﹣1) D. (2,﹣1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,四邊形ABCD四條邊上的中點分別為E、F、G、H,順次連接EF、FG、GH、HE,得到四邊形EFGH(即四邊形ABCD的中點四邊形).
(1)四邊形EFGH的形狀是 , 證明你的結(jié)論;
(2)當(dāng)四邊形ABCD的對角線滿足條件時,四邊形EFGH是矩形;
(3)你學(xué)過的哪種特殊四邊形的中點四邊形是矩形? .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com