【題目】如圖,矩形紙片ABCD,BC=10,AB=8,E是邊CD上一點,連接AE、折疊該紙片,使點A落在AE上的G點,并使折痕經過點B,得到折痕BF,點FAD上,若DE=5,則GE的長為____

【答案】

【解析】

由勾股定理求出AE的長,證明△ABH∽△EAD,得出求出AH的長,得出AG的長,即可得出答案.

∵四邊形ABCD為矩形,

AB=CD=8,AD=BC=10,∠BAD=D=90°,

AE5

由折疊及軸對稱的性質可知,ABF≌△GBF,BF垂直平分AG

BFAE,AH=GH,

∴∠BAH+ABH=90°,

又∵∠FAH+BAH=90°,

∴∠ABH=FAH,

∴△ABH∽△EAD

,即

解得:AH,

AG=2AH,

GE=AEAG=5

故答案為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】佛山一環(huán)高速化改造后正式收費,車輛經過平勝大橋收費站時,設置了 4 ETC 智能收費(即不 需要人工收費)通道,分別為 A、BC、D 通道,車輛可隨機選擇其中的一個直接讀卡通過.

1)一輛車經過此收費站時,選擇 A 通道通過的概率是___________;

2)現(xiàn)有甲、乙兩輛小車從同一方向通過此收費站,請你用樹狀圖或列表格求出兩輛車選擇不同通道通過的概率

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+2x軸于A﹣1,0),B4,0)兩點,交y軸于點C,與過點C且平行于x軸的直線交于另一點D,點P是拋物線上一動點.

1)求拋物線解析式及點D坐標;

2)點Ex軸上,若以AE,D,P為頂點的四邊形是平行四邊形,求此時點P的坐標;

3)過點P作直線CD的垂線,垂足為Q,若將△CPQ沿CP翻折,點Q的對應點為Q′.是否存在點P,使Q′恰好落在x軸上?若存在,求出此時點P的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=ax2+bx+c的頂點為D﹣1,2),與x軸的一個交點A在點(﹣3,0)和(﹣2,0)之間,其部分圖象如圖,則以下結論:①b2﹣4ac0;②當x﹣1時,yx增大而減小;③a+b+c0;④若方程ax2+bx+c﹣m=0沒有實數(shù)根,則m2; 3a+c0.其中正確結論的個數(shù)是( 。

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】實驗數(shù)據(jù)顯示,一般成人喝半斤低度白酒后,1.5 小時內其血液中酒精含量 y(毫克/百毫升) 與時間 x(時)的關系可近似地用二次函數(shù) y=200x2+400x 刻畫;1.5 小時后(包括 1.5 小時)y x 可近似地用反比例函數(shù) 刻畫(如圖所示)

1)根據(jù)上述數(shù)學模型計算:喝酒后幾時血液中的酒精含量達到最大值?最大值為多少?

2)按國家規(guī)定,車輛駕駛人員血液中的酒精含量大于或等于 20 毫克/百毫升時屬于酒后駕駛,不能駕車上路.參照上述數(shù)學模型,假設某駕駛員晚上 2000 在家喝完半斤低度白酒,第二天早上 700 能否駕車去上班?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】水果店張阿姨以每斤2元的價格購進某種水果若干斤,然后以每斤4元的價格出售,每天可售出100斤.通過調查發(fā)現(xiàn),這種水果每斤的售價每降低1元,每天可多售出200斤.為了保證每天至少售出260斤,張阿姨決定降價銷售.

1)若將這種水果每斤的售價降低x元,則每天的銷售量是    (用含x的代數(shù)式表示)

2)銷售這種水果要想每天盈利300元,張阿姨需將每斤的售價降低多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,直線MN⊙OA,B兩點,AC是直徑,AD平分∠CAM⊙OD,過DDE⊥MNE

1)求證:DE⊙O的切線;

2)若DE=6cmAE=3cm,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,每個小正方形的邊長均為1,則下列A、B、C、D四個圖中的三角形(陰影部分)與△EFG相似的是

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD 中,E,F(xiàn)分別是AB,BC邊上的點,AF與DE相交于點G,且AF=DE.

求證:(1)BF=AE;

(2)AF⊥DE.

查看答案和解析>>

同步練習冊答案