【題目】如圖,在某場足球比賽中,球員甲從球門底部中心點O的正前方10m處起腳射門,足球沿拋物線飛向球門中心線;當足球飛離地面高度為3m時達到最高點,此時足球飛行的水平距離為6m.已知球門的橫梁高為2.44m.
(1)在如圖所示的平面直角坐標系中,問此飛行足球能否進球門?(不計其它情況)
(2)守門員乙站在距離球門2m處,他跳起時手的最大摸高為2.52m,他能阻止球員甲的此次射門嗎?如果不能,他至少后退多遠才能阻止球員甲的射門?
【答案】
(1)解:拋物線的頂點坐標是(4,3),
設拋物線的解析式是:y=a(x-4)2+3,
把(10,0)代入得36a+3=0,
解得a=- ,
則拋物線是y=- (x-4)2+3,
當x=0時,y=- ×16+3=3- = <2.44米,
故能射中球門;
(2)解:當x=2時,y=- (2-4)2+3= >2.52,
∴守門員乙不能阻止球員甲的此次射門,
當y=2.52時,y=- (x-4)2+3=2.52,
解得:x1=1.6,x2=6.4(舍去),
∴2-1.6=0.4(m),
答:他至少后退0.4m,才能阻止球員甲的射門.
【解析】(1) 抓住題中關鍵的已知條件可得出拋物線的頂點坐標為(4,3)且圖像經過(10,0),利用待定系數法求出函數解析式即可。
(2)求出當x=2時對應的函數值,再與2.52比較大小,即可得出答案;再求出當y=2.52時對應的自變量的值,通過計算得出結果即可。
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線 與x軸的交點為A,B(點A在點B的左側),與y軸的交點為C,連結BC.點M是拋物線上A,C之間的一個動點,過點M作MN∥BC,分別交x軸、拋物線于D,N,過點M作EF⊥x軸,垂足為F,并交直線BC于點E,
(1)求點A,B,C的坐標.
(2)當點M恰好是EF的中點,求BD的長.
(3)連接DE,記△DEM,△BDE的面積分別為S1,S2 ,當BD=1時,請求S2-S1的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某超市銷售一種牛奶,進價為每箱24元,規(guī)定售價不低于進價現(xiàn)在的售價為每箱36元,每月可銷售60箱市場調查發(fā)現(xiàn):若這種牛奶的售價每降價1元,則每月的銷量將增加10箱,設每箱牛奶降價x元(x為正整數),每月的銷量為y箱.
(1)寫出y與x之間的函數關系式和自變量x的取值范圍;
(2)市如何定價,才能使每月銷售牛奶的利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】請你補全證明過程:如圖,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,求證:EF∥CD
證明:∵DG⊥BC,AC⊥BC(已知)
∴∠DGB=90°,∠ACB=90°①( )
∴∠DGB=∠ACB ②( )
∴DG∥AC ③( )
∴∠2= ④________ ⑤( )
又∠1=∠2 ⑥( )
∴∠1=∠DCA ⑦( )
∴EF∥CD ⑧( )
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y= +bx+c的圖象如圖所示,對稱軸為直線x=1.有位學生寫出了以下五個結論:①ac>0;②方程ax2+bx+c=0的兩根是 =﹣1, =3;③2a﹣b=0;④當x>1時,y隨x的增大而減;則以上結論中正確的有( ).
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在“家電下鄉(xiāng)”活動期間,凡購買指定家用電器的農村居民均可得到該商品售價13%的財政補貼.村民小李購買了一臺A型洗衣機,小王購買了一臺B型洗衣機兩人一共得到財政補貼351元,又知B型洗衣機售價比A型洗衣機售價多500元.求:
(1)A型洗衣機和B型洗衣機的售價各是多少元?
(2)小李和小王購買洗衣機除財政補貼外實際各付款多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD中,AD=CD,∠DAB=∠ACB=90°,過點D作DE⊥AC,垂足為F,
DE與AB相交于點E.
(1)求證:ABAF=CBCD;
(2)已知AB=15cm,BC=9cm,P是線段DE上的動點.設DP=x cm,梯形BCDP的面積為y .
①求y關于x的函數關系式.
②y是否存在最大值?若有求出這個最大值,若不存在請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,⊙O的半徑OD⊥弦AB于點C,連結AO并延長交⊙O于點E,連結EC.若AB=8,CD=2,則EC的長為( )
A.2
B.2
C.2
D.8
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com