如圖,若將邊長(zhǎng)為1的正方形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°到正方形AB′C′D′,則圖中陰影部分的面積為
1-
3
3
1-
3
3
分析:設(shè)B′C′與CD的交點(diǎn)為E,連接AE,利用“HL”證明Rt△AB′E和Rt△ADE全等,根據(jù)全等三角形對(duì)應(yīng)角相等∠DAE=∠B′AE,再根據(jù)旋轉(zhuǎn)角求出∠DAB′=60°,然后求出∠DAE=30°,再解直角三角形求出DE,然后根據(jù)陰影部分的面積=正方形ABCD的面積-四邊形ADEB′的面積,列式計(jì)算即可得解.
解答:解:如圖,設(shè)B′C′與CD的交點(diǎn)為E,連接AE,
在Rt△AB′E和Rt△ADE中,
AE=AE
AB′=AD
,
∴Rt△AB′E≌Rt△ADE(HL),
∴∠DAE=∠B′AE,
∵旋轉(zhuǎn)角為30°,
∴∠DAB′=60°,
∴∠DAE=
1
2
×60°=30°,
∴DE=1×
3
3
=
3
3
,
∴陰影部分的面積=1×1-2×(
1
2
×1×
3
3
)=1-
3
3

故答案為:1-
3
3
點(diǎn)評(píng):本題考查了旋轉(zhuǎn)的性質(zhì),正方形的性質(zhì),全等三角形判定與性質(zhì),解直角三角形,利用全等三角形求出∠DAE=∠B′AE,從而求出∠DAE=30°是解題的關(guān)鍵,也是本題的難點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖1,將邊長(zhǎng)為2cm的兩個(gè)互相重合的正方形紙片按住其中一個(gè)不動(dòng),另一個(gè)繞點(diǎn)B順時(shí)針旋轉(zhuǎn)一個(gè)角度,若使重疊部分的面積為
4
3
3
cm2,則這個(gè)旋轉(zhuǎn)角度為
 
度.
如圖2,將上述兩個(gè)互相重合的正方形紙片沿對(duì)角線AC翻折成等腰直角三角形后,再抽出其中一個(gè)等腰直角三角形沿AC移動(dòng),若重疊部分△A′PC的面積是1cm2,則它移動(dòng)的距離AA′等于
 
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

某班甲、乙、丙三位同學(xué)進(jìn)行了一次用正方形紙片折疊探究相關(guān)數(shù)學(xué)問(wèn)題的課題學(xué)習(xí)活動(dòng).
活動(dòng)情境:
如圖2,將邊長(zhǎng)為8cm的正方形紙片ABCD沿EG折疊(折痕EG分別與AB、DC交于點(diǎn)E、G),使點(diǎn)B落在AD邊上的點(diǎn) F處,F(xiàn)N與DC交于點(diǎn)M處,連接BF與EG交于點(diǎn)P.
所得結(jié)論:
當(dāng)點(diǎn)F與AD的中點(diǎn)重合時(shí):(如圖1)甲、乙、丙三位同學(xué)各得到如精英家教網(wǎng)下一個(gè)正確結(jié)論(或結(jié)果):
甲:△AEF的邊AE=
 
cm,EF=
 
cm;
乙:△FDM的周長(zhǎng)為16cm;
丙:EG=BF.
你的任務(wù):
(1)填充甲同學(xué)所得結(jié)果中的數(shù)據(jù);
(2)寫(xiě)出在乙同學(xué)所得結(jié)果的求解過(guò)程;
(3)當(dāng)點(diǎn)F在AD邊上除點(diǎn)A、D外的任何一處(如圖2)時(shí):
①試問(wèn)乙同學(xué)的結(jié)果是否發(fā)生變化?請(qǐng)證明你的結(jié)論;
②丙同學(xué)的結(jié)論還成立嗎?若不成立,請(qǐng)說(shuō)明理由,若你認(rèn)為成立,先證明EG=BF,再求出S(S為四邊形AEGD的面積)與x(AF=x)的函數(shù)關(guān)系式,并問(wèn)當(dāng)x為何值時(shí),S最大?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,若將邊長(zhǎng)為3和2的兩小正方形紙板剪拼成一個(gè)大正方形,則該大正方形的邊長(zhǎng)為
13
13

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

某班甲、乙、丙三位同學(xué)進(jìn)行了一次用正方形紙片折疊探究相關(guān)數(shù)學(xué)問(wèn)題的課題學(xué)習(xí)活動(dòng).
活動(dòng)情境:
如圖2,將邊長(zhǎng)為8cm的正方形紙片ABCD沿EG折疊(折痕EG分別與AB、DC交于點(diǎn)E、G),使點(diǎn)B落在AD邊上的點(diǎn) F處,F(xiàn)N與DC交于點(diǎn)M處,連接BF與EG交于點(diǎn)P.
所得結(jié)論:
當(dāng)點(diǎn)F與AD的中點(diǎn)重合時(shí):(如圖1)甲、乙、丙三位同學(xué)各得到如下一個(gè)正確結(jié)論(或結(jié)果):
甲:△AEF的邊AE=     cm,EF=    cm;
乙:△FDM的周長(zhǎng)為16 cm;
丙:EG=BF.
你的任務(wù):
【小題1】填充甲同學(xué)所得結(jié)果中的數(shù)據(jù);
【小題2】 寫(xiě)出在乙同學(xué)所得結(jié)果的求解過(guò)程;
【小題3】當(dāng)點(diǎn)F在AD邊上除點(diǎn)A、D外的任何一處(如圖2)時(shí):
① 試問(wèn)乙同學(xué)的結(jié)果是否發(fā)生變化?請(qǐng)證明你的結(jié)論;
② 丙同學(xué)的結(jié)論還成立嗎?若不成立,請(qǐng)說(shuō)明理由,若你認(rèn)為成立,先證明EG=BF,再求出S(S為四邊形AEGD的面積)與x(AF=x)的函數(shù)關(guān)系式,并問(wèn)當(dāng)x為何值時(shí),S最大?最大值是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案