(2006•黃岡)如圖,在平面直角坐標(biāo)系中,四邊形OABC為矩形,點(diǎn)A、B的坐標(biāo)分別為(4,0)、(4,3),動(dòng)點(diǎn)M、N分別從點(diǎn)O、B同時(shí)出發(fā),以每秒1個(gè)單位的速度運(yùn)動(dòng),其中點(diǎn)M沿OA向終點(diǎn)A運(yùn)動(dòng),點(diǎn)N沿BC向終點(diǎn)C運(yùn)動(dòng),過(guò)點(diǎn)N作NP⊥BC,交AC于點(diǎn)P,連接MP,當(dāng)兩動(dòng)點(diǎn)運(yùn)動(dòng)了t秒時(shí).
(1)P點(diǎn)的坐標(biāo)為_(kāi)_____(用含t的代數(shù)式表示);
(2)記△MPA的面積為S,求S與t的函數(shù)關(guān)系式(0<t<4);
(3)當(dāng)t=______秒時(shí),S有最大值,最大值是______;
(4)若點(diǎn)Q在y軸上,當(dāng)S有最大值且△QAN為等腰三角形時(shí),求直線AQ的解析式.

【答案】分析:(1)可在直角三角形CPN中,根據(jù)CP的長(zhǎng)和∠BPA的三角函數(shù)值求出CN、PN的長(zhǎng),即可表示出P點(diǎn)的坐標(biāo);
(2)三角形MPA中,MA的長(zhǎng)易得出,MA上的高就是P點(diǎn)的縱坐標(biāo),由此可得出S,t的函數(shù)關(guān)系式;
(3)根據(jù)(2)的函數(shù)關(guān)系可得出S的最大值,及對(duì)應(yīng)的t的值;
(4)本題要分三種情況進(jìn)行討論:①Q(mào)N=NA;②AQ=AN;③QN=AQ;可設(shè)Q點(diǎn)的坐標(biāo),然后表示出NQ、NA、QA的長(zhǎng),根據(jù)上述三種情況中不同的等量關(guān)系可求出不同的Q點(diǎn)坐標(biāo),然后用待定系數(shù)法即可求出直線AQ的解析式.
解答:解:(1)(4-t,);

(2)S=-t2+t(0<t<4);

(3)由(2)知:S=-t2+t=-(t-2)2+,
因此當(dāng)t=2時(shí),Smax=;

(4)由(3)知,當(dāng)S有最大值時(shí),t=2,此時(shí)N在BC的中點(diǎn)處,如圖,
設(shè)Q(0,y),
∵△AOQ是直角三角形,
∴AQ2=16+y2,QN2=4+(3-y)2,AN2=13,
∵△QAN為等腰三角形,
①若AQ=AN,此時(shí)方程無(wú)解,
②若AQ=QN,解得y=,
③若QN=AN,解得y1=0,y2=6,
∴Q1(0,),Q2(0,0),Q3(0,6),
當(dāng)Q為(0,),直線AQ的解析式為y=,
當(dāng)Q為(0,0)時(shí),A(4,0)、Q(0,0)均在x軸上,
直線AQ的解析式為y=0(或直線為x軸),
當(dāng)Q為(0,6)時(shí),Q、N、A在同一直線上,△ANQ不存在,舍去,
故直線AQ的解析式為y=或y=0.
點(diǎn)評(píng):本題考查了矩形的性質(zhì)、等腰三角形的判定、圖形面積的求法及二次函數(shù)的應(yīng)用等知識(shí).要注意(4)題在不確定等腰三角形的腰和底的情況下,要分類(lèi)討論,不要漏解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2009年湖北省黃石市十四中中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2006•黃岡)如圖,在平面直角坐標(biāo)系中,四邊形OABC為矩形,點(diǎn)A、B的坐標(biāo)分別為(4,0)、(4,3),動(dòng)點(diǎn)M、N分別從點(diǎn)O、B同時(shí)出發(fā),以每秒1個(gè)單位的速度運(yùn)動(dòng),其中點(diǎn)M沿OA向終點(diǎn)A運(yùn)動(dòng),點(diǎn)N沿BC向終點(diǎn)C運(yùn)動(dòng),過(guò)點(diǎn)N作NP⊥BC,交AC于點(diǎn)P,連接MP,當(dāng)兩動(dòng)點(diǎn)運(yùn)動(dòng)了t秒時(shí).
(1)P點(diǎn)的坐標(biāo)為_(kāi)_____(用含t的代數(shù)式表示);
(2)記△MPA的面積為S,求S與t的函數(shù)關(guān)系式(0<t<4);
(3)當(dāng)t=______秒時(shí),S有最大值,最大值是______;
(4)若點(diǎn)Q在y軸上,當(dāng)S有最大值且△QAN為等腰三角形時(shí),求直線AQ的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年湖北省黃岡市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2006•黃岡)如圖,在平面直角坐標(biāo)系中,四邊形OABC為矩形,點(diǎn)A、B的坐標(biāo)分別為(4,0)、(4,3),動(dòng)點(diǎn)M、N分別從點(diǎn)O、B同時(shí)出發(fā),以每秒1個(gè)單位的速度運(yùn)動(dòng),其中點(diǎn)M沿OA向終點(diǎn)A運(yùn)動(dòng),點(diǎn)N沿BC向終點(diǎn)C運(yùn)動(dòng),過(guò)點(diǎn)N作NP⊥BC,交AC于點(diǎn)P,連接MP,當(dāng)兩動(dòng)點(diǎn)運(yùn)動(dòng)了t秒時(shí).
(1)P點(diǎn)的坐標(biāo)為_(kāi)_____(用含t的代數(shù)式表示);
(2)記△MPA的面積為S,求S與t的函數(shù)關(guān)系式(0<t<4);
(3)當(dāng)t=______秒時(shí),S有最大值,最大值是______;
(4)若點(diǎn)Q在y軸上,當(dāng)S有最大值且△QAN為等腰三角形時(shí),求直線AQ的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年湖北省黃岡市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2006•黃岡)如圖,AB、AC分別是⊙O的直徑和弦,點(diǎn)D為劣弧AC上一點(diǎn),弦ED分別交⊙O于點(diǎn)E,交AB于點(diǎn)H,交AC于點(diǎn)F,過(guò)點(diǎn)C的切線交ED的延長(zhǎng)線于點(diǎn)P.
(1)若PC=PF,求證:AB⊥ED;
(2)點(diǎn)D在劣弧AC的什么位置時(shí),才能使AD2=DE•DF,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年湖北省黃岡市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2006•黃岡)如圖所示,DB∥AC,且DB=AC,E是AC的中點(diǎn),求證:BC=DE.

查看答案和解析>>

同步練習(xí)冊(cè)答案