(2006•黃岡)如圖,AB、AC分別是⊙O的直徑和弦,點D為劣弧AC上一點,弦ED分別交⊙O于點E,交AB于點H,交AC于點F,過點C的切線交ED的延長線于點P.
(1)若PC=PF,求證:AB⊥ED;
(2)點D在劣弧AC的什么位置時,才能使AD2=DE•DF,為什么?

【答案】分析:(1)作輔助線,連接OC.根據(jù)切線的性質(zhì),OC⊥PC.根據(jù)PC=PF,OC=OA,可得:∠PCF=∠PFC,∠OCF=∠OAC.
在Rt△FHA中,可得:∠FHA=90°,故AB⊥ED;
(2)根據(jù)AD2=DE•DF,可得:△FAD∽△AED,∠FAD=∠DEA.從而可知:=,即D在劣弧AC的中點.
解答:(1)證明:連接OC,∵PC為⊙O的切線,
∴∠OCP=∠FCP+∠OCF=90°,
∵PC=PF,
∴∠PCF=∠PFC,
∵OA=OC,
∴∠OCA=∠OAC,
∵∠CFP=∠AFH,
∴∠AFH+∠OAC=90°,
∴∠AHF=90°,
即:AB⊥ED.

(2)解:D在劣弧AC的中點時,才能使AD2=DE•DF.
連接AE.若AD2=DE•DF,
可得:△FAD∽△AED,
∴∠FAD=∠DEA,
=
即D為劣弧AC的中點時,能使AD2=DE•DF.
點評:本題主要考查切線的性質(zhì)和相似三角形性質(zhì)的運用.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2006•黃岡)如圖,在平面直角坐標系中,四邊形OABC為矩形,點A、B的坐標分別為(4,0)、(4,3),動點M、N分別從點O、B同時出發(fā),以每秒1個單位的速度運動,其中點M沿OA向終點A運動,點N沿BC向終點C運動,過點N作NP⊥BC,交AC于點P,連接MP,當兩動點運動了t秒時.
(1)P點的坐標為______(用含t的代數(shù)式表示);
(2)記△MPA的面積為S,求S與t的函數(shù)關(guān)系式(0<t<4);
(3)當t=______秒時,S有最大值,最大值是______;
(4)若點Q在y軸上,當S有最大值且△QAN為等腰三角形時,求直線AQ的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年湖北省黃石市十四中中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2006•黃岡)如圖,在平面直角坐標系中,四邊形OABC為矩形,點A、B的坐標分別為(4,0)、(4,3),動點M、N分別從點O、B同時出發(fā),以每秒1個單位的速度運動,其中點M沿OA向終點A運動,點N沿BC向終點C運動,過點N作NP⊥BC,交AC于點P,連接MP,當兩動點運動了t秒時.
(1)P點的坐標為______(用含t的代數(shù)式表示);
(2)記△MPA的面積為S,求S與t的函數(shù)關(guān)系式(0<t<4);
(3)當t=______秒時,S有最大值,最大值是______;
(4)若點Q在y軸上,當S有最大值且△QAN為等腰三角形時,求直線AQ的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年湖北省黃岡市中考數(shù)學(xué)試卷(課標卷)(解析版) 題型:解答題

(2006•黃岡)如圖,在平面直角坐標系中,四邊形OABC為矩形,點A、B的坐標分別為(4,0)、(4,3),動點M、N分別從點O、B同時出發(fā),以每秒1個單位的速度運動,其中點M沿OA向終點A運動,點N沿BC向終點C運動,過點N作NP⊥BC,交AC于點P,連接MP,當兩動點運動了t秒時.
(1)P點的坐標為______(用含t的代數(shù)式表示);
(2)記△MPA的面積為S,求S與t的函數(shù)關(guān)系式(0<t<4);
(3)當t=______秒時,S有最大值,最大值是______;
(4)若點Q在y軸上,當S有最大值且△QAN為等腰三角形時,求直線AQ的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年湖北省黃岡市中考數(shù)學(xué)試卷(課標卷)(解析版) 題型:解答題

(2006•黃岡)如圖所示,DB∥AC,且DB=AC,E是AC的中點,求證:BC=DE.

查看答案和解析>>

同步練習冊答案