【題目】如圖:點(diǎn)C在線段BD上,AC⊥CE,∠A=∠1,∠E=∠2.
(1)若∠1=70°,求∠B、∠D的度數(shù);
(2)判斷AB與ED的位置關(guān)系,并說明理由;
(3)作∠A、∠E的角平分線相交于點(diǎn)P,求∠P的度數(shù).
【答案】(1),;(2),證明見解析;(3).
【解析】
(1)由三角形內(nèi)角和及已知直接可求∠B ,再AC⊥CE可得,求出∠2,同理可求∠D.
(2)由已知易得,從而可得,根據(jù)平行線的判定定理得到:直線與平行.
(3)由AP、EP是∠BAC、∠CED的角平分線可得,再由三角形內(nèi)角和定理可求,進(jìn)而可得,再由三角形內(nèi)角和即可求解.
解:(1)∵∠A=∠1,∠1=70°,
在中,,
∴,
又,
∴,
又∵,,
.
(2);理由如下:
,
∴,
又∵∠A=∠1,∠E=∠2.
∴
∴,
又∵,
,
.
(3)如圖,連接AE,
由(2)可知,
∵AP、EP平分、,即,
∴,
,
∴,
∴,
∴,
即:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在連接A地與B地的線段上有四個不同的點(diǎn)D、G、K、Q,下列四幅圖中的實線分別表示某人從A地到B地的不同行進(jìn)路線(箭頭表示行進(jìn)的方向),則路程最長的行進(jìn)路線圖是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠A=90°,點(diǎn)D在線段BC上,∠EDB= ∠C,BE⊥DE,垂足E,DE與AB相交于點(diǎn)F.
(1)當(dāng)AB=AC時,(如圖1),
① ∠EBF=°;
②求證:BE= 1 2 FD;
(2)當(dāng)AB=kAC時(如圖2),求 的值(用含k的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,點(diǎn),分別是邊,上的點(diǎn),點(diǎn)是一動點(diǎn).記為,為,為.
(1)若點(diǎn)在線段上,且,如圖1,則_____________;
(2)若點(diǎn)在邊上運(yùn)動,如圖2所示,請猜想,,之間的關(guān)系,并說明理由;
(3)若點(diǎn)運(yùn)動到邊的延長線上,如圖3所示,則,,之間又有何關(guān)系?請直接寫出結(jié)論,不用說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知平行四邊形中, ,垂足為與的延長線相交于,且,連接;
(1)如圖,求證:四邊形是菱形;
(2)如圖,連接,若,在不添加任何輔助線的情況下,直接寫出圖中所有面積等于的面積的鈍角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某校九年級學(xué)生的身高情況,隨機(jī)抽取部分學(xué)生的身高進(jìn)行調(diào)查,利用所得數(shù)據(jù)繪成如圖統(tǒng)計圖表:
頻數(shù)分布表
身高分組 | 頻數(shù) | 百分比 |
x<155 | 5 | 10% |
155≤x<160 | a | 20% |
160≤x<165 | 15 | 30% |
165≤x<170 | 14 | b |
x≥170 | 6 | 12% |
總計 | 100% |
(1)填空:a=____,b=____;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)該校九年級共有600名學(xué)生,估計身高不低于165cm的學(xué)生大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合題
(1)操作發(fā)現(xiàn):
如圖①,在正方形ABCD中,過A點(diǎn)有直線AP,點(diǎn)B關(guān)于AP的對稱點(diǎn)為E,連接DE交AP于點(diǎn)F,當(dāng)∠BAP=20°時,則∠AFD=°;當(dāng)∠BAP=α°(0<α<45°)時,則∠AFD=;猜想線段DF,EF,AF之間的數(shù)量關(guān)系:DF﹣EF=AF(填系數(shù));
(2)數(shù)學(xué)思考:
如圖②,若將“正方形ABCD中”改成“菱形ABCD中,∠BAD=120°”,其他條件不變,則∠AFD=;線段DF,EF,AF之間的數(shù)量關(guān)系是否發(fā)生改變,若發(fā)生改變,請寫出數(shù)量關(guān)系并說明理由;
(3)類比探究:
如圖③,若將“正方形ABCD中”改成“菱形ABCD中,∠BAD=α°”,其他條件不變,則∠AFD=°;請直接寫出線段DF,EF,AF之間的數(shù)量關(guān)系: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果商從批發(fā)市場用8000元購進(jìn)了大櫻桃和小櫻桃各200千克,大櫻桃的進(jìn)價比小櫻桃的進(jìn)價每千克多20元.大櫻桃售價為每千克40元,小櫻桃售價為每千克16元.
(1)大櫻桃和小櫻桃的進(jìn)價分別是每千克多少元?銷售完后,該水果商共賺了多少元錢?
(2)該水果商第二次仍用8000元錢從批發(fā)市場購進(jìn)了大櫻桃和小櫻桃各200千克,進(jìn)價不變,但在運(yùn)輸過程中小櫻桃損耗了20%.若小櫻桃的售價不變,要想讓第二次賺的錢不少于第一次所賺錢的90%,大櫻桃的售價最少應(yīng)為多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com