【題目】若四邊形的一條對(duì)角線把四邊形分成兩個(gè)等腰三角形,則這條對(duì)角線叫做這個(gè)四邊形的“巧分線”,這個(gè)四邊形叫“巧妙四邊形”,若一個(gè)四邊形有兩條巧分線,則稱為“絕妙四邊形”.
(1)下列四邊形一定是巧妙四邊形的是 ;(填序號(hào)點(diǎn)①平行四邊形;②矩形;③菱形;④正方形.
初步應(yīng)用
(2)在絕妙四邊形ABCD中,AC垂直平分BD,若∠BAD=80°,則∠BCD= ;
深入研究
(3)如圖,在梯形ABCD中,AD∥BC,AB=AD=CD,∠B=72°.求證:梯形ABCD是絕妙四邊形.
(4)在巧妙四邊形ABCD中,AB=AD=CD,∠A=90°,AC是四邊形ABCD的巧分線,請(qǐng)直接寫出∠BCD的度數(shù).
【答案】(1)③④;(2)140°或80°或160°;(3)見(jiàn)解析;(4)∠BCD的度數(shù)是45°或135°或90°
【解析】
(1)由巧妙四邊形的定義,即可得到菱形和正方形是巧妙四邊形;
(2)根據(jù)絕妙四邊形的定義可知:兩條對(duì)角線都是巧分線,分情況畫圖進(jìn)行計(jì)算可得結(jié)論;
(3)首先根據(jù)題意畫出圖形,然后分別證明兩條對(duì)角線分成的三角形是等腰三角形即可;
(4)根據(jù)AC是四邊形ABCD的巧分線,可知:△ACD和△ABC是等腰三角形,△ABC是等腰三角形時(shí)分三種情況畫圖進(jìn)行討論可得結(jié)論.
解:(1)∵菱形的四條邊相等,
∴連接對(duì)角線能得到兩個(gè)等腰三角形,
∴菱形是巧妙四邊形;
正方形是特殊的菱形,所以正方形也是巧妙四邊形;
故答案是:③④;
(2)分三種情況,
①當(dāng)AC=AD=AB時(shí),如圖1,
∵AC垂直平分BD,
∴AB=AD,BC=CD,AC⊥BD,
∴∠BAC=∠DAC,
∵∠BAD=80°,
∴∠BAC=∠DAC=40°,
∵AC=AD=AB,
∴∠ACD=∠ADC=∠ACB=∠ABC==70°,
∴∠BCD=2∠ACD=140°;
②當(dāng)AD=CD,AB=BC時(shí),如圖2,
∵AC垂直平分BD,
∴AB=AD,BC=CD,AC⊥BD,
∴AB=AD=CD=BC,
∴四邊形ABCD是菱形,
∴∠BCD=∠BAD=80°;
③在四邊形ABCD中,AC=CD=BC,如圖3,
∴∠CAD=∠ADC=40°
∴∠ACD=∠ACB=100°
∴∠BCD=360°﹣100°﹣100°=160°;
綜上,∠BCD=140°或80°或160°;
故答案為:140°或80°或160°;
(3)如圖4,連接AC與BD,交于點(diǎn)O,
在梯形ABCD中,AB=CD,
∴∠ABC=∠DCB=72°,
∵AD∥BC,
∴∠BAD=∠ADC=108°,
∵AB=AD=CD,
∴△ABD是等腰三角形,∠ABD=∠ADB=36°,
∴∠DBC=72°﹣36°=36°,∠BDC=108°﹣36°=72°=∠DCB,
∴△BDC也是等腰三角形,
∴對(duì)角線BD叫做這個(gè)四邊形ABCD的“巧分線”,
同理可得△ADC和△ACB也是等腰三角形,
∴對(duì)角線AC叫做這個(gè)四邊形ABCD的“巧分線”,
∴梯形ABCD是絕妙四邊形;
(4)∵AC是四邊形ABCD的巧分線,
∴△ACD和△ABC是等腰三角形,
①當(dāng)AC=BC時(shí),如圖5,過(guò)C作CH⊥AB于H,過(guò)C作CG⊥AD,交AD的延長(zhǎng)線于G,
∵∠HAD=∠AHC=∠G=90°,
∴四邊形AHCG是矩形,
∴AH=CG=AB=CD,
∴∠CDG=30°,
∴∠ADC=150°,
∴∠DAC=∠DCA=15°,
∵∠DAB=90°,
∴∠CAB=∠B=75°,
∴∠ACB=30°,
∴∠BCD=30°+15°=45°;
②當(dāng)AC=AB時(shí),如圖6,
∵AC=AB=AD=CD,
∴△ACD是等邊三角形,
∴∠CAD=∠ACD=60°,
∵∠BAD=90°,
∴∠BAC=30°,
∵AB=AC,
∴∠ACB=75°,
∴∠BCD=75°+60°=135°;
③當(dāng)AB=BC時(shí),如圖7,此時(shí)∠BCD=90°
綜上,∠BCD的度數(shù)是45°或135°或90°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將九年級(jí)部分男生擲實(shí)心球的成績(jī)進(jìn)行整理,分成5個(gè)小組(x表示成績(jī),單位:米).A組:5.25≤x<6.25;B組:6.25≤x<7.25;C組:7.25≤x<8.25;D組:8.25≤x<9.25;E組:9.25≤x<10.25,并繪制出扇形統(tǒng)計(jì)圖和頻數(shù)分布直方圖(不完整).規(guī)定x≥6.25為合格,x≥9.25為優(yōu)秀.
(1)這部分男生有多少人?其中成績(jī)合格的有多少人?
(2)這部分男生成績(jī)的中位數(shù)落在哪一組?扇形統(tǒng)計(jì)圖中D組對(duì)應(yīng)的圓心角是多少度?
(3)要從成績(jī)優(yōu)秀的學(xué)生中,隨機(jī)選出2人介紹經(jīng)驗(yàn),已知甲、乙兩位同學(xué)的成績(jī)均為優(yōu)秀,求他倆至少有1人被選中的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】矩形紙片ABCD,AD=4,AB=3,如果點(diǎn)E在邊BC上,將紙片沿AE折疊,使點(diǎn)B落在點(diǎn)F處,聯(lián)結(jié)FC,當(dāng)△EFC是直角三角形時(shí),那么BE的長(zhǎng)為____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,O是等邊△ABC的外心,BO的延長(zhǎng)線和⊙O相交于點(diǎn)D,連接DC,DA,OA,OC.
(1)求證:△BOC≌△CDA;
(2)若AB=,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某射擊教練為了了解隊(duì)員訓(xùn)練情況,從隊(duì)員中選取甲、乙兩名隊(duì)員進(jìn)行射擊測(cè)試,相同條件下各射靶5次,成績(jī)統(tǒng)計(jì)如下:
命中環(huán)數(shù) | 6 | 7 | 8 | 9 | 10 |
甲命中相應(yīng)環(huán)數(shù)的次數(shù) | 0 | 1 | 3 | 1 | 0 |
乙命中相應(yīng)環(huán)數(shù)的次數(shù) | 2 | 0 | 0 | 2 | 1 |
(1)試通過(guò)計(jì)算說(shuō)明甲、乙兩人的成績(jī)誰(shuí)比較穩(wěn)定?
(3)如果乙再射擊1次,命中8環(huán),那么乙射擊成績(jī)的方差會(huì) .(填“變大”、“變小”或“不變”)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:
∵∠1=∠2( ),
且∠1=∠4( )
∴∠2=∠4(等量代換)
∴CE∥BF( )
∴∠ =∠3( )
又∵∠B=∠C(已知)
∴∠3=∠B( )
∴AB∥CD( ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】探索與證明:
(1)如圖①,直線經(jīng)過(guò)正三角形的頂點(diǎn),在直線上取點(diǎn),,使得,.通過(guò)觀察或測(cè)量,猜想線段,與之間滿足的數(shù)量關(guān)系,并予以證明;
(2)將(1)中的直線繞著點(diǎn)逆時(shí)針?lè)较蛐D(zhuǎn)一個(gè)角度到如圖②的位置,,.通過(guò)觀察或測(cè)量,猜想線段,與之間滿足的數(shù)量關(guān)系,并予以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ABC為銳角,點(diǎn)D為直線BC上一動(dòng)點(diǎn),以AD為直角邊且在AD的右側(cè)作等腰直角三角形ADE,∠DAE=90°,AD=AE.
(1)如果AB=AC,∠BAC=90°.①當(dāng)點(diǎn)D在線段BC上時(shí),如圖1,線段CE、BD的位置關(guān)系為___________,數(shù)量關(guān)系為___________
②當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上時(shí),如圖2,①中的結(jié)論是否仍然成立,請(qǐng)說(shuō)明理由.
(2)如圖3,如果AB≠AC,∠BAC≠90°,點(diǎn)D在線段BC上運(yùn)動(dòng)。探究:當(dāng)∠ACB多少度時(shí),CE⊥BC?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一根長(zhǎng)為2017個(gè)單位長(zhǎng)度且沒(méi)有彈性的細(xì)線(線的粗細(xì)忽略不計(jì))的一端固定在A處,并按A→B→C→D→A…的規(guī)律緊繞在四邊形ABCD的邊上,則細(xì)線的另一端所在位置的點(diǎn)的坐標(biāo)是( )
A. (﹣1,﹣2) B. (―1,1)
C. (-1,-1) D. (1,―2)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com