如圖,拋物線y=ax2+bx(a>0)經(jīng)過(guò)原點(diǎn)O和點(diǎn)A(2,0).
(1)寫出拋物線的對(duì)稱軸與x軸的交點(diǎn)坐標(biāo);
(2)點(diǎn)(x1,y1),(x2,y2)在拋物線上,若x1<x2<1,比較y1,y2的大小;
(3)點(diǎn)B(﹣1,2)在該拋物線上,點(diǎn)C與點(diǎn)B關(guān)于拋物線的對(duì)稱軸對(duì)稱,求直線AC的函數(shù)關(guān)系式.
(1)交點(diǎn)坐標(biāo)(1,0)。
(2)y1>y2。
(3)y=2x﹣4。
解析試題分析:(1)根據(jù)圖示可以直接寫出拋物線的對(duì)稱軸與x軸的交點(diǎn)坐標(biāo)。
(2)根據(jù)拋物線的對(duì)稱軸與x軸的交點(diǎn)坐標(biāo)可以求得該拋物線的對(duì)稱軸是x=1,然后根據(jù)函數(shù)圖象的增減性進(jìn)行解題。
(3)根據(jù)已知條件可以求得點(diǎn)C的坐標(biāo)是(3,2),所以根據(jù)點(diǎn)A、C的坐標(biāo)來(lái)求直線AC的函數(shù)關(guān)系式。
解:(1)根據(jù)圖示,由拋物線的對(duì)稱性可知,拋物線的對(duì)稱軸與x軸的交點(diǎn)坐標(biāo)(1,0)。
(2)拋物線的對(duì)稱軸是直線x=1.
根據(jù)圖示知,當(dāng)x<1時(shí),y隨x的增大而減小,
∴當(dāng)x1<x2<1時(shí),y1>y2。
(3)∵對(duì)稱軸是x=1,點(diǎn)B(﹣1,2)在該拋物線上,點(diǎn)C與點(diǎn)B關(guān)于拋物線的對(duì)稱軸對(duì)稱,
∴點(diǎn)C的坐標(biāo)是(3,2)。
設(shè)直線AC的關(guān)系式為y=kx+b(k≠0),則
,解得。
∴直線AC的函數(shù)關(guān)系式是:y=2x﹣4。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
已知:拋物線C1:y=x2。如圖(1),平移拋物線C1得到拋物線C2,C2經(jīng)過(guò)C1的頂點(diǎn)O和A(2,0),C2的對(duì)稱軸分別交C1、C2于點(diǎn)B、D。
(1)求拋物線C2的解析式;
(2)探究四邊形ODAB的形狀并證明你的結(jié)論;
(3)如圖(2),將拋物線C2向下平移m個(gè)單位(m>0)得拋物線C3,C3的頂點(diǎn)為G,與y軸交于M。點(diǎn)N是M關(guān)于x軸的對(duì)稱點(diǎn),點(diǎn)P()在直線MG上。問(wèn):當(dāng)m為何值時(shí),在拋物線C3上存在點(diǎn)Q,使得以M、N、P、Q為頂點(diǎn)的四邊形為平行四邊形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
銅仁市某電解金屬錳廠從今年1月起安裝使用回收凈化設(shè)備(安裝時(shí)間不計(jì)),這樣既改善了環(huán)境,又降低了原料成本,根據(jù)統(tǒng)計(jì),在使用回收凈化設(shè)備后的1至x月的利潤(rùn)的月平均值w(萬(wàn)元)滿足w=10x+90.
(1)設(shè)使用回收凈化設(shè)備后的1至x月的利潤(rùn)和為y,請(qǐng)寫出y與x的函數(shù)關(guān)系式.
(2)請(qǐng)問(wèn)前多少個(gè)月的利潤(rùn)和等于1620萬(wàn)元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知拋物線(a>0)與x軸交于點(diǎn)B、C,與y軸交于點(diǎn)E,且點(diǎn)B在點(diǎn)C的左側(cè).
(1)若拋物線過(guò)點(diǎn)M(﹣2,﹣2),求實(shí)數(shù)a的值;
(2)在(1)的條件下,解答下列問(wèn)題;
①求出△BCE的面積;
②在拋物線的對(duì)稱軸上找一點(diǎn)H,使CH+EH的值最小,直接寫出點(diǎn)H的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,拋物線y=a(x﹣h)2+k經(jīng)過(guò)點(diǎn)A(0,1),且頂點(diǎn)坐標(biāo)為B(1,2),它的對(duì)稱軸與x軸交于點(diǎn)C.
(1)求此拋物線的解析式.
(2)在第一象限內(nèi)的拋物線上求點(diǎn)P,使得△ACP是以AC為底的等腰三角形,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo).
(3)上述點(diǎn)是否是第一象限內(nèi)此拋物線上與AC距離最遠(yuǎn)的點(diǎn)?若是,請(qǐng)說(shuō)明理由;若不是,請(qǐng)求出第一象限內(nèi)此拋物線上與AC距離最遠(yuǎn)的點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,拋物線經(jīng)過(guò)△ABC的三個(gè)頂點(diǎn),點(diǎn)A坐標(biāo)為(0,3),點(diǎn)B坐標(biāo)為(2,3),點(diǎn)C在x軸的正半軸上.
(1)求該拋物線的函數(shù)關(guān)系表達(dá)式及點(diǎn)C的坐標(biāo);
(2)點(diǎn)E為線段OC上一動(dòng)點(diǎn),以O(shè)E為邊在第一象限內(nèi)作正方形OEFG,當(dāng)正方形的頂點(diǎn)F恰好落在線段AC上時(shí),求線段OE的長(zhǎng);
(3)將(2)中的正方形OEFG沿OC向右平移,記平移中的正方形OEFG為正方形DEFG,當(dāng)點(diǎn)E和點(diǎn)C重合時(shí)停止運(yùn)動(dòng).設(shè)平移的距離為t,正方形DEFG的邊EF與AC交于點(diǎn)M,DG所在的直線與AC交于點(diǎn)N,連接DM,是否存在這樣的t,使△DMN是等腰三角形?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由;
(4)在上述平移過(guò)程中,當(dāng)正方形DEFG與△ABC的重疊部分為五邊形時(shí),請(qǐng)直接寫出重疊部分的面積S與平移距離t的函數(shù)關(guān)系式及自變量t的取值范圍;并求出當(dāng)t為何值時(shí),S有最大值,最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
已知:y=y1+y2,y1與x2成正比例,y2與x成反比例,且x=1時(shí),y=3;x=﹣1時(shí),y=1.求x=﹣ 時(shí),y的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,坐標(biāo)原點(diǎn)為O,A點(diǎn)坐標(biāo)為(4,0),B點(diǎn)坐標(biāo)為(﹣1,0),以AB的中點(diǎn)P為圓心,AB為直徑作⊙P的正半軸交于點(diǎn)C.
(1)求經(jīng)過(guò)A、B、C三點(diǎn)的拋物線所對(duì)應(yīng)的函數(shù)解析式;
(2)設(shè)M為(1)中拋物線的頂點(diǎn),求直線MC對(duì)應(yīng)的函數(shù)解析式;
(3)試說(shuō)明直線MC與⊙P的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題
如圖,在平面直角坐標(biāo)系中,直線y=2x+4與軸、軸分別交于A、B兩點(diǎn),以AB為邊在第二象限作正方形ABCD,點(diǎn)D在雙曲線上,將正方形ABCD沿軸正方向平移個(gè)單位長(zhǎng)度后,點(diǎn)C恰好落在此雙曲線上,則的值是( ).
A.1 B.2 C.3 D.4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com