【題目】螞蟻從點O出發(fā),在一條直線上來回爬行.假定向右爬行的路程記為正數(shù),向左爬行的路程記為負數(shù),則爬過的各段路程依次記為(單位:cm):+5,-3,+10,-8,-6,+12,-10.

(1)螞蟻最后是否回到出發(fā)點O?

(2)螞蟻離開出發(fā)點O最遠是多少?

(3)在爬行過程中,如果每爬行1獎勵一粒糖,那么螞蟻一共得到多少粒糖?

【答案】(1)回到了出發(fā)點;(2)12cm;(3)54

【解析】試題分析:(1)要想知道螞蟻是否能回到原點,關鍵是看它分別向左向右的爬行路程之和是否為0.

(2)離出發(fā)點最遠的距離,就是將小蟲爬行的路程依次相加,看看走到哪一段是最大值.

(3)要求一共得到多少米粒,即就是問螞蟻一共爬行了多少路程即可.

解:(1)將所有記錄的路程相加,

(+5)+(-3)+(+10)+(-8)+(-6)+(+12)+(-10)

=((+5)+(+10)+(+12))+((-3)+(-8)+(-6)+(-10))

=27+(-27)

=0(cm).

即左右爬行的路程相同, 螞蟻最后回到出發(fā)點O.

(2)根據(jù)記錄的數(shù)據(jù),

螞蟻離出發(fā)點最遠的距離是(+5)+(-3)+(+10)=12(cm).

(3)取所有路程的絕對值,

|+5|+|3|+|+10|+|8|+|6|+|+12|+|10|

=5+3+10+8+6+12+10

=54(cm).

由于每爬行1cm,獎勵一粒糖,所以螞蟻一共得到芝麻的粒數(shù)為:54×1=54().

: 螞蟻一共得到54粒糖.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,在Rt△ABC中,∠C=90°,∠A=60°,AC=3,點DAB的中點,點E為線段BC上的點,連接DE,把△BDE沿著DE翻折得△B1DE

(1)當A、DB1、C構(gòu)成的四邊形為平行四邊形,求DE的長;

(2)當DB1AC時,求△DE B1和△ABC重疊部分的面積

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一般情況下不成立,但有些數(shù)可以使得它成立,例如:m=n=0時,我們稱使得成立的一對數(shù)m,n相伴數(shù)對,記為(m,n).

(1)若(m,1)是相伴數(shù)對,則m=_____

(2)(m,n)是相伴數(shù)對,則代數(shù)式m﹣[n+(6﹣12n﹣15m)]的值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c(a≠0)與x軸交于點A(﹣1,0)和B(3,0),與y軸交于點C,點D的橫坐標為m(0<m<3),連結(jié)DC并延長至E,使得CE=CD,連結(jié)BE,BC.

(1)求拋物線的解析式;

(2)用含m的代數(shù)式表示點E的坐標,并求出點E縱坐標的范圍;

(3)求BCE的面積最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,用火柴棒擺出一列正方形圖案,第①個圖案用了 4 根,第②個圖案用了 12 根,第③個圖案用了 24 ,按照這種方式擺下去,擺出第⑥個圖案用火柴棒的根數(shù)是(

A. 84 B. 81 C. 78 D. 76

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖數(shù)軸上A、B、C三點對應的數(shù)分別是a、b、7,滿足OA=3,BC=1,P為數(shù)軸上一動點,點PA出發(fā),沿數(shù)軸正方向以每秒1.5個單位長度的速度勻速運動,點Q從點C出發(fā)在射線CA上向點A勻速運動,且P、Q兩點同時出發(fā).

(1)a、b的值

(2)P運動到線段OB的中點時,點Q運動的位置恰好是線段AB靠近點B的三等分點,求點Q的運動速度

(3)P、Q兩點間的距離是6個單位長度時,求OP的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:矩形ABCD中,AB=2,BC=5,E、P分別在AD、BC上,且DE=BP=1.

(1)判斷BEC的形狀,并說明理由?

(2)判斷四邊形EFPH是什么特殊四邊形?并證明你的判斷;

(3)求四邊形EFPH的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB、CD相交于點O,PCD上一點,

(1)過點PAB的垂線段PE;

(2)過點PCD的垂線,與AB相交于點F;

(3)將線段PE、PF、FO從小到大排列為_____,這樣排列的依據(jù)是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在學校組織的知識競賽中,八(1)班比賽成績分為A,B,C,D四個等級,其中相應等級的得分依次記為100分,90分,80分,70分,學校將八(1)班成績整理并繪制成如下的統(tǒng)計圖.

請你根據(jù)以上提供的信息解答下列問題:

(1)請根據(jù)統(tǒng)計圖的信息求出成績?yōu)?/span>C等級的人數(shù);

(2)將表格補充完整.

查看答案和解析>>

同步練習冊答案