【題目】如圖數(shù)軸上A、B、C三點(diǎn)對(duì)應(yīng)的數(shù)分別是a、b、7,滿足OA=3,BC=1,P為數(shù)軸上一動(dòng)點(diǎn),點(diǎn)P從A出發(fā),沿?cái)?shù)軸正方向以每秒1.5個(gè)單位長度的速度勻速運(yùn)動(dòng),點(diǎn)Q從點(diǎn)C出發(fā)在射線CA上向點(diǎn)A勻速運(yùn)動(dòng),且P、Q兩點(diǎn)同時(shí)出發(fā).
(1)求a、b的值
(2)當(dāng)P運(yùn)動(dòng)到線段OB的中點(diǎn)時(shí),點(diǎn)Q運(yùn)動(dòng)的位置恰好是線段AB靠近點(diǎn)B的三等分點(diǎn),求點(diǎn)Q的運(yùn)動(dòng)速度
(3)當(dāng)P、Q兩點(diǎn)間的距離是6個(gè)單位長度時(shí),求OP的長.
【答案】(1)-3,6;(2)點(diǎn)Q的運(yùn)動(dòng)速度每秒1個(gè)單位長度;(3)OP的長為0.6或6.6.
【解析】
(1)由點(diǎn)C表示7,可得OC=7,由OA=3,BC=1,得A、B兩點(diǎn)表示的數(shù),可得a、b的值;
(2)先計(jì)算P運(yùn)動(dòng)時(shí)間,根據(jù)點(diǎn)Q運(yùn)動(dòng)的位置恰好是線段AB靠近點(diǎn)B的三等分點(diǎn),可知:BQ=AB,可得點(diǎn)Q的路程,根據(jù)時(shí)間可得結(jié)論;
(3)設(shè)t秒時(shí),PQ=6,分兩種情況:①如圖1,當(dāng)Q在P的右側(cè)時(shí),②如圖2,當(dāng)Q在P的左側(cè)時(shí);根據(jù)PQ=6分別列式可得t的值,再計(jì)算OP的長.
(1)∵OA=3,
∴點(diǎn)A表示的數(shù)為﹣3,即a=﹣3,
∵C表示的數(shù)為7,
∴OC=7,
∵BC=1,
∴OB=6,
∴點(diǎn)B表示的數(shù)為6,即b=6;
(2)當(dāng)P為OB的中點(diǎn)時(shí),
AP=AO+OP=3+OB=3+3=6,
t==4(s),
由題意得:BQ=AB=×(3+6)=3,
∴CQ=BQ+BC=1+3=4,
∴VQ==1,
答:點(diǎn)Q的運(yùn)動(dòng)速度每秒1個(gè)單位長度;
(3)設(shè)t秒時(shí),PQ=6,
分兩種情況:
①如圖1,當(dāng)Q在P的右側(cè)時(shí),
AP+PQ+CQ=3+7,
1.5t+6+t=3+7,
t=1.6,
AP=1.5t=2.4,
∴OP=3﹣2.4=0.6,
②如圖2,當(dāng)Q在P的左側(cè)時(shí),
AP+CQ=AC+PQ=10+6,
1.5t+t=16,
t=6.4,
AP=1.5t=1.5×6.4=9.6,
∴OP=9.6﹣3=6.6,
綜上所述,OP的長為0.6或6.6.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,拋物線y=x2﹣2x與x軸交于O、B兩點(diǎn),頂點(diǎn)為P,連接OP、BP,直線y=x﹣4與y軸交于點(diǎn)C,與x軸交于點(diǎn)D.
(Ⅰ)直接寫出點(diǎn)B坐標(biāo) ;判斷△OBP的形狀 ;
(Ⅱ)將拋物線沿對(duì)稱軸平移m個(gè)單位長度,平移的過程中交y軸于點(diǎn)A,分別連接CP、DP;
(i)若拋物線向下平移m個(gè)單位長度,當(dāng)S△PCD= S△POC時(shí),求平移后的拋物線的頂點(diǎn)坐標(biāo);
(ii)在平移過程中,試探究S△PCD和S△POD之間的數(shù)量關(guān)系,直接寫出它們之間的數(shù)量關(guān)系及對(duì)應(yīng)的m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校開展了形式多樣的“陽光體育運(yùn)動(dòng)”活動(dòng),小李對(duì)某班同學(xué)參加鍛煉的情況進(jìn)行了統(tǒng)計(jì),并繪制了下面的圖1 和圖2,并且“乒乓球”對(duì)應(yīng)的∠AOC=108°.
(1)求該班級(jí)的學(xué)生人數(shù);
(2)在圖1中將“乒乓球”和“足球”項(xiàng)目的圖形補(bǔ)充完整;
(3)在圖2中求∠AOD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,在平面直角坐標(biāo)系中,A(﹣3,﹣4),B(0,﹣2).
(1)△OAB繞O點(diǎn)旋轉(zhuǎn)180°得到△OA1B1,請(qǐng)畫出△OA1B1,并寫出A1,B1的坐標(biāo);
(2)判斷以A,B,A1,B1為頂點(diǎn)的四邊形的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】螞蟻從點(diǎn)O出發(fā),在一條直線上來回爬行.假定向右爬行的路程記為正數(shù),向左爬行的路程記為負(fù)數(shù),則爬過的各段路程依次記為(單位:cm):+5,-3,+10,-8,-6,+12,-10.
(1)螞蟻?zhàn)詈笫欠窕氐匠霭l(fā)點(diǎn)O?
(2)螞蟻離開出發(fā)點(diǎn)O最遠(yuǎn)是多少?
(3)在爬行過程中,如果每爬行1獎(jiǎng)勵(lì)一粒糖,那么螞蟻一共得到多少粒糖?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若∠AOB=100°,∠BOD=60°,∠AOC=70°時(shí),則∠COD=_____°(自己畫圖并計(jì)算)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如同,△ABC內(nèi)接于⊙O,且半徑OC⊥AB,點(diǎn)D在半徑OB的延長線上,且∠A=∠BCD=30°,AC=2,則由 ,線段CD和線段BD所圍成圖形的陰影部分的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)D、F、E、G都在△ABC的邊上,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的度數(shù).(請(qǐng)?jiān)谙旅娴目崭裉幪顚懤碛苫驍?shù)學(xué)式)
解:∵EF∥AD,(已知)
∴∠2= ( )
∵∠1=∠2,(已知)
∴∠1= ( )
∴ ∥ ,( )
∴∠AGD+ =180°,(兩直線平行,同旁內(nèi)角互補(bǔ))
∵ ,(已知)
∴∠AGD= (等式性質(zhì))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,若拋物線y=﹣x2+3與x軸圍成封閉區(qū)域(邊界除外)內(nèi)整點(diǎn)(點(diǎn)的橫、縱坐標(biāo)都是整數(shù))的個(gè)數(shù)為k,則反比例函數(shù)y= (x>0)的圖象是( )
A.
B.
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com