【題目】如圖數(shù)軸上A、B、C三點(diǎn)對(duì)應(yīng)的數(shù)分別是a、b、7,滿足OA=3,BC=1,P為數(shù)軸上一動(dòng)點(diǎn),點(diǎn)PA出發(fā),沿?cái)?shù)軸正方向以每秒1.5個(gè)單位長度的速度勻速運(yùn)動(dòng),點(diǎn)Q從點(diǎn)C出發(fā)在射線CA上向點(diǎn)A勻速運(yùn)動(dòng),且P、Q兩點(diǎn)同時(shí)出發(fā).

(1)a、b的值

(2)當(dāng)P運(yùn)動(dòng)到線段OB的中點(diǎn)時(shí),點(diǎn)Q運(yùn)動(dòng)的位置恰好是線段AB靠近點(diǎn)B的三等分點(diǎn),求點(diǎn)Q的運(yùn)動(dòng)速度

(3)當(dāng)P、Q兩點(diǎn)間的距離是6個(gè)單位長度時(shí),求OP的長.

【答案】(1)-3,6;(2)點(diǎn)Q的運(yùn)動(dòng)速度每秒1個(gè)單位長度;(3)OP的長為0.6或6.6.

【解析】

(1)由點(diǎn)C表示7,可得OC=7,由OA=3,BC=1,得A、B兩點(diǎn)表示的數(shù),可得a、b的值;

(2)先計(jì)算P運(yùn)動(dòng)時(shí)間,根據(jù)點(diǎn)Q運(yùn)動(dòng)的位置恰好是線段AB靠近點(diǎn)B的三等分點(diǎn),可知:BQ=AB,可得點(diǎn)Q的路程,根據(jù)時(shí)間可得結(jié)論;

(3)設(shè)t秒時(shí),PQ=6,分兩種情況:①如圖1,當(dāng)QP的右側(cè)時(shí),②如圖2,當(dāng)QP的左側(cè)時(shí);根據(jù)PQ=6分別列式可得t的值,再計(jì)算OP的長.

(1)OA=3,

∴點(diǎn)A表示的數(shù)為﹣3,即a=﹣3,

C表示的數(shù)為7,

OC=7,

BC=1,

OB=6,

∴點(diǎn)B表示的數(shù)為6,即b=6;

(2)當(dāng)POB的中點(diǎn)時(shí),

AP=AO+OP=3+OB=3+3=6,

t==4(s),

由題意得:BQ=AB=×(3+6)=3,

CQ=BQ+BC=1+3=4,

VQ==1,

答:點(diǎn)Q的運(yùn)動(dòng)速度每秒1個(gè)單位長度;

(3)設(shè)t秒時(shí),PQ=6,

分兩種情況:

①如圖1,當(dāng)QP的右側(cè)時(shí),

AP+PQ+CQ=3+7,

1.5t+6+t=3+7,

t=1.6,

AP=1.5t=2.4,

OP=3﹣2.4=0.6,

②如圖2,當(dāng)QP的左側(cè)時(shí),

AP+CQ=AC+PQ=10+6,

1.5t+t=16,

t=6.4,

AP=1.5t=1.5×6.4=9.6,

OP=9.6﹣3=6.6,

綜上所述,OP的長為0.66.6.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,拋物線y=x2﹣2x與x軸交于O、B兩點(diǎn),頂點(diǎn)為P,連接OP、BP,直線y=x﹣4與y軸交于點(diǎn)C,與x軸交于點(diǎn)D.
(Ⅰ)直接寫出點(diǎn)B坐標(biāo) ;判斷△OBP的形狀 ;
(Ⅱ)將拋物線沿對(duì)稱軸平移m個(gè)單位長度,平移的過程中交y軸于點(diǎn)A,分別連接CP、DP;
(i)若拋物線向下平移m個(gè)單位長度,當(dāng)SPCD= SPOC時(shí),求平移后的拋物線的頂點(diǎn)坐標(biāo);
(ii)在平移過程中,試探究SPCD和SPOD之間的數(shù)量關(guān)系,直接寫出它們之間的數(shù)量關(guān)系及對(duì)應(yīng)的m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校開展了形式多樣的“陽光體育運(yùn)動(dòng)”活動(dòng),小李對(duì)某班同學(xué)參加鍛煉的情況進(jìn)行了統(tǒng)計(jì),并繪制了下面的圖1 和圖2,并且“乒乓球”對(duì)應(yīng)的∠AOC=108°.

(1)求該班級(jí)的學(xué)生人數(shù);

(2)在圖1中將“乒乓球”和“足球”項(xiàng)目的圖形補(bǔ)充完整;

(3)在圖2中求AOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,在平面直角坐標(biāo)系中,A(3,4),B(0,2).

(1)OAB繞O點(diǎn)旋轉(zhuǎn)180°得到OA1B1,請(qǐng)畫出OA1B1,并寫出A1,B1的坐標(biāo);

(2)判斷以A,B,A1,B1為頂點(diǎn)的四邊形的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】螞蟻從點(diǎn)O出發(fā),在一條直線上來回爬行.假定向右爬行的路程記為正數(shù),向左爬行的路程記為負(fù)數(shù),則爬過的各段路程依次記為(單位:cm):+5,-3,+10,-8,-6,+12,-10.

(1)螞蟻?zhàn)詈笫欠窕氐匠霭l(fā)點(diǎn)O?

(2)螞蟻離開出發(fā)點(diǎn)O最遠(yuǎn)是多少?

(3)在爬行過程中,如果每爬行1獎(jiǎng)勵(lì)一粒糖,那么螞蟻一共得到多少粒糖?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若∠AOB=100°,∠BOD=60°,∠AOC=70°時(shí),則∠COD_____°(自己畫圖并計(jì)算)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如同,△ABC內(nèi)接于⊙O,且半徑OC⊥AB,點(diǎn)D在半徑OB的延長線上,且∠A=∠BCD=30°,AC=2,則由 ,線段CD和線段BD所圍成圖形的陰影部分的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)D、F、E、G都在ABC的邊上,EFAD,1=2BAC=70°,求∠AGD的度數(shù).(請(qǐng)?jiān)谙旅娴目崭裉幪顚懤碛苫驍?shù)學(xué)式)

解:∵EFAD,(已知)

∴∠2=      

∵∠1=2,(已知)

∴∠1=      

      ,(   

∴∠AGD+   =180°,(兩直線平行,同旁內(nèi)角互補(bǔ))

   ,(已知)

∴∠AGD=   (等式性質(zhì))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,若拋物線y=﹣x2+3與x軸圍成封閉區(qū)域(邊界除外)內(nèi)整點(diǎn)(點(diǎn)的橫、縱坐標(biāo)都是整數(shù))的個(gè)數(shù)為k,則反比例函數(shù)y= (x>0)的圖象是(
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案