【題目】如圖,拋物線y=-x2x+x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸于點(diǎn)C,已知點(diǎn)D(0,-).

(1)求直線AC的解析式;

(2)如圖1,P為直線AC上方拋物線上的一動(dòng)點(diǎn),當(dāng)PBD的面積最大時(shí),過PPQx軸于點(diǎn)Q,M為拋物線對(duì)稱軸上的一動(dòng)點(diǎn),過My軸的垂線,垂足為點(diǎn)N,連接PM、NQ,求PM+MN+NQ的最小值;

(3)在(2)問的條件下,將得到的PBQ沿PB翻折得到PBQ′,將PBQ′沿直線BD平移,記平移中的PBQ′P′B′Q″,在平移過程中,設(shè)直線P′B′x軸交于點(diǎn)E,則是否存在這樣的點(diǎn)E,使得B′EQ″為等腰三角形?若存在,求此時(shí)OE的長(zhǎng).

【答案】(1)直線AC的表達(dá)式為;(2)的最小值為;(3).

【解析】分析:(1)求出兩點(diǎn)坐標(biāo),利用待定系數(shù)法即可解決問題;

過點(diǎn)Py軸的平行線交直線BD于點(diǎn)F, 設(shè)點(diǎn) ,則,表示出的長(zhǎng)度,根據(jù),構(gòu)建出二次函數(shù),根據(jù)二次函數(shù)的性質(zhì)求出最值即可.

分三種情況進(jìn)行討論即可.

詳解:(1

、

設(shè)直線AC的表達(dá)式為,將、代入解析式:

可得 則直線AC的表達(dá)式為 ;

2)可得直線BD的解析式為,過點(diǎn)Py軸的平行線交直線BD于點(diǎn)F,

設(shè)點(diǎn) ,則.

,

.

當(dāng),即時(shí),最大;

,過點(diǎn)P作對(duì)稱軸的垂線,垂足為點(diǎn),可得

關(guān)于軸的對(duì)稱點(diǎn),連接,交軸與點(diǎn),

再過點(diǎn)作對(duì)稱軸的垂線,垂足為點(diǎn),即、為所求點(diǎn).

此時(shí)

,則最小值為 ;

3)當(dāng)時(shí),

當(dāng)時(shí),.

當(dāng)時(shí),.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“校園手機(jī)”現(xiàn)象越來越受到社會(huì)的關(guān)注.“寒假”期間,某校小記者隨機(jī)調(diào)查了某地區(qū)若干名學(xué)生和家長(zhǎng)對(duì)中學(xué)生帶手機(jī)現(xiàn)象的看法,統(tǒng)計(jì)整理并制作了如下的統(tǒng)計(jì)圖:

(1)求這次調(diào)查的家長(zhǎng)人數(shù),并補(bǔ)全圖1;

(2)求圖2中表示家長(zhǎng)“贊成”的圓心角的度數(shù);

(3)已知某地區(qū)共6500名家長(zhǎng),估計(jì)其中反對(duì)中學(xué)生帶手機(jī)的大約有多少名家長(zhǎng)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,C為⊙O上一點(diǎn),AD和過C點(diǎn)的切線互相垂直,垂足為D.

(1)求證:AC平分∠DAB;

(2)過點(diǎn)O作線段AC的垂線OE,垂足為E(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法);

3)若CD=4,AC=4,求垂線段OE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】出租車司機(jī)小張某天上午營(yíng)運(yùn)全是在東西走向的政府大道上進(jìn)行的,如果規(guī)定向東為正,向西為負(fù),他這天上午的行程是(單位千米)+15,-3,+16,-11,+10,-12,+4,-15,+16,-18

(1)將最后一名乘客送達(dá)目的地時(shí),小張距上午出發(fā)點(diǎn)的距離是多少千米?在出發(fā)點(diǎn)的什么方向?

(2)若汽車耗油量為06升/千米,出車時(shí),郵箱有油722升,若小張將最后一名乘客送達(dá)目的地,再返回出發(fā)地,問小張今天上午是否需要加油?若要加油至少需要加多少才能返回出發(fā)地?若不用加油,請(qǐng)說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一種密碼,將英文26個(gè)字舟a,b,cz(不論大小寫)依次對(duì)應(yīng)1,2,3,26,這26個(gè)自然數(shù)(見表格),當(dāng)明碼對(duì)應(yīng)的序號(hào)x為奇數(shù)時(shí),密碼對(duì)應(yīng)的序號(hào),當(dāng)明碼對(duì)應(yīng)的序號(hào)x為偶數(shù)時(shí),密碼對(duì)應(yīng)的序號(hào)+12,按下述規(guī)定,將明碼“l(fā)ove”譯成密碼是(

A.loveB.rkwuC.sdriD.rewj

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某軟件科技公司20人負(fù)責(zé)研發(fā)與維護(hù)游戲、網(wǎng)購(gòu)、視頻和送餐共4款軟件.投入市場(chǎng)后,游戲軟件的利潤(rùn)占這4款軟件總利潤(rùn)的40%.如圖是這4款軟件研發(fā)與維護(hù)人數(shù)的扇形統(tǒng)計(jì)圖和利潤(rùn)的條形統(tǒng)計(jì)圖.

根據(jù)以上信息,網(wǎng)答下列問題

(1)直接寫出圖中a,m的值;

(2)分別求網(wǎng)購(gòu)與視頻軟件的人均利潤(rùn);

(3)在總?cè)藬?shù)和各款軟件人均利潤(rùn)都保持不變的情況下,能否只調(diào)整網(wǎng)購(gòu)與視頻軟件的研發(fā)與維護(hù)人數(shù),使總利潤(rùn)增加60萬元?如果能,寫出調(diào)整方案;如果不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)給定的一張矩形紙片ABCD進(jìn)行如下操作:先沿CE折疊,使點(diǎn)B落在CD邊上(如圖①),再沿CH折疊,這時(shí)發(fā)現(xiàn)點(diǎn)E恰好與點(diǎn)D重合(如圖②

(1)根據(jù)以上操作和發(fā)現(xiàn),求的值;

(2)將該矩形紙片展開.

①如圖③,折疊該矩形紙片,使點(diǎn)C與點(diǎn)H重合,折痕與AB相交于點(diǎn)P,再將該矩形紙片展開.求證:∠HPC=90°;

②不借助工具,利用圖④探索一種新的折疊方法,找出與圖③中位置相同的P點(diǎn),要求只有一條折痕,且點(diǎn)P在折痕上,請(qǐng)簡(jiǎn)要說明折疊方法.(不需說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】出租車司機(jī)小張某天上午營(yíng)運(yùn)全是在東西走向的政府大道上進(jìn)行的,如果規(guī)定向東為正,向西為負(fù),他這天上午的行程是(單位千米)+15,-3,+16,-11,+10,-12,+4,-15,+16,-18

(1)將最后一名乘客送達(dá)目的地時(shí),小張距上午出發(fā)點(diǎn)的距離是多少千米?在出發(fā)點(diǎn)的什么方向?

(2)若汽車耗油量為06升/千米,出車時(shí),郵箱有油722升,若小張將最后一名乘客送達(dá)目的地,再返回出發(fā)地,問小張今天上午是否需要加油?若要加油至少需要加多少才能返回出發(fā)地?若不用加油,請(qǐng)說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】201853日,中國(guó)科學(xué)院在上海發(fā)布了中國(guó)首款人工智能芯片:寒武紀(jì)(MLU100),該芯片在平衡模式下的等效理論峰值速度達(dá)每秒128 000 000 000 000次定點(diǎn)運(yùn)算,將數(shù)

128 000 000 000 000用科學(xué)計(jì)數(shù)法表示為(

A. 1.281014 B. 1.2810-14 C. 1281012 D. 0.1281011

查看答案和解析>>

同步練習(xí)冊(cè)答案