【題目】在某校舉辦的足球比賽中,規(guī)定:勝一場(chǎng)得3分,平一場(chǎng)得1分,負(fù)一場(chǎng)得0分.某班足球隊(duì)參加了12場(chǎng)比賽,共得22分,已知這個(gè)球隊(duì)只輸了2場(chǎng),那么此隊(duì)勝幾場(chǎng),平幾場(chǎng)?

【答案】此隊(duì)勝了6場(chǎng),平了4場(chǎng).

【解析】

設(shè)勝x場(chǎng),平y場(chǎng),由題意得等量關(guān)系:平的場(chǎng)數(shù)+負(fù)的場(chǎng)數(shù)+勝的場(chǎng)數(shù)=12,平場(chǎng)得分+勝場(chǎng)得分+負(fù)場(chǎng)得分=22分,根據(jù)等量關(guān)系列出方程組即可.

設(shè)此隊(duì)勝x場(chǎng),平(10-x)場(chǎng),

22=3x+10-x, 12=2x,6=x,

10-x=4.

故此隊(duì)勝了6場(chǎng),平了4場(chǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)P的坐標(biāo)為(,),點(diǎn)Q的坐標(biāo)為(,),且,若P,Q為某個(gè)矩形的兩個(gè)頂點(diǎn),且該矩形的邊均與某條坐標(biāo)軸垂直,則稱該矩形為點(diǎn)P,Q相關(guān)矩形.下圖為點(diǎn)P,Q 相關(guān)矩形的示意圖

1)已知點(diǎn)A的坐標(biāo)為(1,0

若點(diǎn)B的坐標(biāo)為(31)求點(diǎn)A,B相關(guān)矩形的面積;

點(diǎn)C在直線x=3上,若點(diǎn)A,C相關(guān)矩形為正方形,求直線AC的表達(dá)式;

2O的半徑為,點(diǎn)M的坐標(biāo)為(m3).若在O上存在一點(diǎn)N,使得點(diǎn)M,N相關(guān)矩形為正方形,求m的取值范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】a3ab2分解因式的結(jié)果為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中錯(cuò)誤的是(  )
A.平行四邊形的對(duì)邊相等
B.兩組對(duì)邊分別相等的四邊形是平行四邊形
C.矩形的對(duì)角線相等
D.對(duì)角線相等的四邊形是矩形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在數(shù)軸上,若A點(diǎn)表示數(shù)﹣1,點(diǎn)B表示數(shù)2,A、B兩點(diǎn)之間的距離為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,點(diǎn)P、Q分別是等邊△ABC邊AB、BC上的動(dòng)點(diǎn)(端點(diǎn)除外),點(diǎn)P從頂點(diǎn)A、點(diǎn)Q從頂點(diǎn)B同時(shí)出發(fā),且它們的運(yùn)動(dòng)速度相同,連接AQ、CP交于點(diǎn)M.

(1)求證:△ABQ≌△CAP;

(2)當(dāng)點(diǎn)P、Q分別在AB、BC邊上運(yùn)動(dòng)時(shí),∠QMC變化嗎?若變化,請(qǐng)說(shuō)明理由;若不變,求出它的度數(shù).

(3)如圖2,若點(diǎn)P、Q在運(yùn)動(dòng)到終點(diǎn)后繼續(xù)在射線AB、BC上運(yùn)動(dòng),直線AQ、CP交點(diǎn)為M,則∠QMC變化嗎?若變化,請(qǐng)說(shuō)明理由;若不變,直接寫出它的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2016四川省涼山州)閱讀下列材料并回答問(wèn)題:

材料1:如果一個(gè)三角形的三邊長(zhǎng)分別為a,b,c,記,那么三角形的面積為

古希臘幾何學(xué)家海倫(Heron,約公元50年),在數(shù)學(xué)史上以解決幾何測(cè)量問(wèn)題而聞名.他在《度量》一書中,給出了公式①和它的證明,這一公式稱海倫公式

我國(guó)南宋數(shù)學(xué)家秦九韶(約1202﹣﹣約1261),曾提出利用三角形的三邊求面積的秦九韶公式:

下面我們對(duì)公式②進(jìn)行變形:

這說(shuō)明海倫公式與秦九韶公式實(shí)質(zhì)上是同一公式,所以我們也稱①為海倫﹣﹣秦九韶公式

問(wèn)題:如圖,在△ABC中,AB=13,BC=12,AC=7,⊙O內(nèi)切于△ABC,切點(diǎn)分別是D、E、F

(1)求△ABC的面積;

(2)求⊙O的半徑

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商人在一次買賣中均以120元賣出兩件商品,其中一件賺了20%,一件賠了20%,在這次交易中,該商人( 。
A.不賠不賺
B.賺了10元
C.賠了10元
D.賠了30元

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCD中,對(duì)角線AC和BD相交于點(diǎn)O,如果AC=12、BD=10、AB=m,那么m的取值范圍是( 。

A. 1<m<11 B. 2<m<22 C. 10<m<12 D. 5<m<6

查看答案和解析>>

同步練習(xí)冊(cè)答案