【題目】已知關(guān)于x的一元二次方程.
(1)求證:無論k取何實(shí)數(shù)值,方程總有實(shí)數(shù)根;
(2)若等腰△ABC的一邊長a=6,另兩邊長b、c恰好是這個(gè)方程的兩個(gè)根,求此三角形的三邊長?
【答案】(1)見解析;(2)三角形的三邊為4、6、6或6、6、10.
【解析】
(1)計(jì)算方程的判別式大于等于0即可;
(2)由等腰三角形的性質(zhì)有a=b=6、a=c=6或b=c三種情況,當(dāng)b=6或c=6時(shí),可知x=2為方程的一個(gè)根,代入可求得k的值,則可求得方程的根,可求得三邊長;當(dāng)b=c時(shí),可知方程有兩個(gè)相等的實(shí)數(shù)根,由判別式等于0可求得k,同樣可求得方程的兩根,可求得三角形的三邊長.
(1)證明:
∵一元二次方程x2﹣(3k+1)x+2k2+2k=0,
∴△=(3k+1)2﹣4(2k2+2k)=9k2+6k+1﹣8k2+8k=k2﹣2k+1=(k﹣1)2≥0,
∴無論k取何實(shí)數(shù)值,方程總有實(shí)數(shù)根;
(2)解:
∵△ABC為等腰三角形,
∴有a=b=6、a=c=6或b=c三種情況,
①當(dāng)a=b=6或a=c=6時(shí),可知x=6為方程的一個(gè)根,
∴62﹣6(3k+1)+2k2+2k=0,解得k=3或k=5,
當(dāng)k=3時(shí),方程為x2﹣10x+24=0,解得x=4或x=6,
∴三角形的三邊長為4、6、6,
當(dāng)k=5時(shí),方程為x2﹣16x+60=0,解得x=6或x=10,
∴三角形的三邊長為6、6、10,
②當(dāng)b=c時(shí),則方程有兩個(gè)相等的實(shí)數(shù)根,
∴△=0,即(k﹣1)2=0,解得k1=k2=1,
∴方程為x2﹣4x+4=0,解得x1=x2=2,
此時(shí)三角形三邊為6、2、2,不滿足三角形三邊關(guān)系,舍去,
綜上可知三角形的三邊為4、6、6或6、6、10.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)某一個(gè)函數(shù)給出如下定義:若存在實(shí)數(shù),對(duì)于函數(shù)圖象上橫坐標(biāo)之差為1的任意兩點(diǎn),,都成立,則稱這個(gè)函數(shù)是限減函數(shù),在所有滿足條件的中,其最大值稱為這個(gè)函數(shù)的限減系數(shù).例如,函數(shù),當(dāng)取值和時(shí),函數(shù)值分別為,,故,因此函數(shù)是限減函數(shù),它的限減系數(shù)為.
(1)寫出函數(shù)的限減系數(shù);
(2),已知()是限減函數(shù),且限減系數(shù),求的取值范圍.
(3)已知函數(shù)的圖象上一點(diǎn),過點(diǎn)作直線垂直于軸,將函數(shù)的圖象在點(diǎn)右側(cè)的部分關(guān)于直線翻折,其余部分保持不變,得到一個(gè)新函數(shù)的圖象,如果這個(gè)新函數(shù)是限減函數(shù),且限減系數(shù),直接寫出點(diǎn)橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在正方形中,是對(duì)角線上的一點(diǎn),點(diǎn)在的延長線上,交于,.
(1)求證:;
(2)連接,若,求;
(3)如圖2,若把正方形改為菱形,其他條件不變,當(dāng)時(shí),猜想與的數(shù)量關(guān)系,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A、B、C、D依次在同一條直線上,點(diǎn)E、F分別在直線AD的兩側(cè),已知BE∥CF,∠A=∠D,AE=DF.
(1)求證:四邊形BFCE是平行四邊形;
(2)填空:若AD=7,AB=2.5,∠EBD=60°,當(dāng)四邊形BFCE是菱形時(shí),菱形BFCE的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與x軸交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,連結(jié)AC,現(xiàn)有一寬度為1,且長與y軸平行的矩形沿x軸方向平移,交直線AC于點(diǎn)D和E,△ODE周長的最小值為( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖1,拋物線的頂點(diǎn)為M,平行于x軸的直線與該拋物線交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B左側(cè)),根據(jù)對(duì)稱性△AMB恒為等腰三角形,我們規(guī)定:當(dāng)△AMB為直角三角形時(shí),就稱△AMB為該拋物線的“完美三角形”.
(1)①如圖2,求出拋物線y=x2的“完美三角形”斜邊AB的長;
②請(qǐng)寫出一個(gè)拋物線的解析式,使它的完美三角形與y=x2+1的“完美三角形”全等;
(2)若拋物線y=ax2+4的“完美三角形”的斜邊長為4,求a的值;
(3)若拋物線y=mx2+2x+n5的“完美三角形”斜邊長為n,且y=mx2+2x+n5的最大值為1,求m,n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BA=BC,以AB為直徑的⊙O分別交AC、BC于點(diǎn)D、E,BC的延長線于⊙O的切線AF交于點(diǎn)F.
(1)求證:∠ABC=2∠CAF;
(2)若AC=2,CE:EB=1:4,求CE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某小區(qū)號(hào)樓對(duì)外銷售,已知號(hào)樓某單元共層,一樓為商鋪,只租不售,二樓以上價(jià)格如下:第層售價(jià)為元/米,從第層起每上升一層,每平方米的售價(jià)提高元,反之每降一層,每平方米的售價(jià)降低元,已知該單元每套的面積均為米
優(yōu)惠活動(dòng)
活動(dòng)一:若一次性付清所有房款,降價(jià),另免年物業(yè)費(fèi)共元.
活動(dòng)二:若購買者一次性付清所有房款,降價(jià),無贈(zèng)送.
(1)請(qǐng)?jiān)谙卤碇,補(bǔ)充完整售價(jià)(元/米)與樓層(取正整數(shù))之間的的數(shù)關(guān)系式.
樓層(層) | 樓 | 樓 | ||
售價(jià)(元/米) | 不售 |
(2)某客戶想購買該單元第層的一套樓房,若他一次性付清購房款,可以參加如圖優(yōu)惠活動(dòng).請(qǐng)你幫助他分析哪種優(yōu)惠方案更合算
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象經(jīng)過原點(diǎn)和,與軸交于另一點(diǎn),且對(duì)稱軸是.
(1)求二次函數(shù)的表達(dá)式;
(2)若是上的一點(diǎn),作,交于點(diǎn),當(dāng)的面積最大時(shí),求點(diǎn)的坐標(biāo);
(3)是軸上的點(diǎn),過作軸,與拋物線交于點(diǎn),過作軸于,是否存在點(diǎn),使以點(diǎn)、、為頂點(diǎn)的三角形與以點(diǎn)、、為頂點(diǎn)的三角形相似?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com