【題目】陳老師要為他家的長方形餐廳(如圖1)選擇一張餐桌,并且想按如下要求擺放:餐桌一側(cè)靠墻,靠墻對面的桌邊留出寬度不小于80 cm的通道,另兩邊各留出寬度不小于60 cm的通道.那么在圖2的四張餐桌中,其規(guī)格符合要求的餐桌編號是________

1                2

【答案】①②③④

【解析】

根據(jù)要求先計算出符合要求的最大尺寸,符合要求的餐桌長=230-60×2、餐桌的寬=180-80,再進行選擇就行.

230-60×2=110cm,180-80=100cm,

80<100,所以符合;

100=100,所以符合;

90<100,所以符合;

④∵餐桌長60+2×30=120,

∴將有半圓的那一邊靠墻,則靠墻對面的桌邊留出的寬度為230-120=110>80,

另兩邊留出的寬度為=60,所以符合.

∴以上①②③④種規(guī)格的餐桌都符合要求.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtABC中,∠ACB=90°,AC=3,BC=4,將邊AC沿CE翻折,使點A落在AB上的點D處;再將邊BC沿CF翻折,使點B落在CD的延長線上的點B′處,兩條折痕與斜邊AB分別交于點E、F,則線段B′F的長為(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在四邊形ABCD中,AB=AD,∠BAD=60°,∠ABC=∠ADC=90°,點E、F分別在線段BC、CD上,∠EAF=30°,連接EF.

(1)如圖2,將△ABE繞點A逆時針旋轉(zhuǎn)60°后得到△A′B′E′(A′B′與AD重合),那么
①∠E′AF度數(shù)②線段BE、EF、FD之間的數(shù)量關(guān)系
(2)如圖3,當點E、F分別在線段BC、CD的延長線上時,其他條件不變,請?zhí)骄烤段BE、EF、FD之間的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知如圖所示的一張平行四邊形紙片ABCD(ADAB),將紙片折疊一次,使點A與點C重合,再展開,折痕EFAD邊于點E,交BC邊于點F,分別連結(jié)AFCE.

(1)求證:四邊形AFCE是菱形.

(2)若AB=8cm,B=90°,ABF的面積為24cm2,求菱形AFCE的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A1的坐標為(1,0),A2y軸的正半軸上,且∠A1A2O30°,過點A2A2A3A1A2,垂足為A2,交x軸于點A3;過點A3A3A4A2A3,垂足為A3,交y軸于點A4;過點A4A4A5A3A4,垂足為A4,交x軸于點A5……按此規(guī)律進行下去,則點A3的坐標為________,點A2017的橫坐標為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,⊙C與y軸相切,且C點坐標為(2,0),直線l過點A(﹣2,0),與⊙C相切于點D,求直線l的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:直線AB經(jīng)過點A(0,3)點B( ,0),點M在y軸上,⊙M經(jīng)過點A、B,交x軸于另一點C.

(1)求直線AB的解析式;
(2)求點M的坐標;
(3)點P是劣弧AC上一個動點,當P點運動時,問:線段PA,PB,PC有什么數(shù)量關(guān)系?并給出證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某巡警騎摩托車在一條南北大道上來回巡邏,一天早晨,他從崗亭出發(fā),中午停留在處,規(guī)定向北方向為正,當天上午連續(xù)行駛情況記錄如下(單位:千米):+5,﹣4,+3,﹣7,+4,﹣8,+2,﹣1.

1處在崗亭何方?距離崗亭多遠?

(2)若摩托車每行駛1千米耗油升,這一天上午共耗油多少升?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知BE平分∠ABD,DE平分∠BDC,且∠EBDEDB90°.

(1)試說明:ABCD

(2)HBE的延長線與直線CD的交點,BI平分∠HBD,寫出∠EBI與∠BHD的數(shù)量關(guān)系并說明理由

查看答案和解析>>

同步練習冊答案