【題目】如圖:直線AB經(jīng)過點(diǎn)A(0,3)點(diǎn)B( ,0),點(diǎn)M在y軸上,⊙M經(jīng)過點(diǎn)A、B,交x軸于另一點(diǎn)C.

(1)求直線AB的解析式;
(2)求點(diǎn)M的坐標(biāo);
(3)點(diǎn)P是劣弧AC上一個動點(diǎn),當(dāng)P點(diǎn)運(yùn)動時,問:線段PA,PB,PC有什么數(shù)量關(guān)系?并給出證明.

【答案】
(1)解:設(shè)直線AB的解析式為y=kx+b,

把點(diǎn)A(0,3)和點(diǎn)B( ,0)代入y+kx+b得到 ,

解得 ,

∴直線AB的解析式為y=﹣ x+3


(2)解:如圖1中,連接BM.設(shè)AM=BM=r.

在Rt△BMO中,

∵OM2+OB2=BM2,OM=3﹣r,OB= ,

∴(3﹣r)2+( 2=r2

∴r=2,

∴OM=3﹣2=1,

∴點(diǎn)M坐標(biāo)為(0,1)


(3)解:結(jié)論:PB=PA+PC,理由如下:

如圖2中,連接AC、在PB上截取PN=PC,連接CN.

∵OM⊥BC,

∴OC=OB,

∴AC=AB,

∵tan∠ABO= = = ,

∴∠ABC=60°,

∴△ABC是等邊三角形,

∴AC=CB,∠ACB=∠CAB=60°,

∴∠CPB=∠CAB=60°,∵PC=PN,

∴△PCN是等邊三角形,

∴CP=CN,∠PCN=60°,

∴∠PCN=∠ACB=60°,

∴∠PCA=∠NCB,∵PC=CN,CA=CB,

∴△PCA≌△NCB,

∴PA=BN,

∵PB=PN+BN,PN=PC,BN=PA,

∴PB=PA+PC.


【解析】(1)設(shè)直線AB的解析式為y=kx+b,把點(diǎn)A(0,3)和點(diǎn)B( ,0)代入y+kx+b得到 解方程組即可.(2)如圖1中,連接BM.設(shè)AM=BM=r.在Rt△BMO中,由OM2+OB2=BM2 , OM=3﹣r,OB= ,可得(3﹣r)2+( 2=r2 , 解方程即可.(3)結(jié)論:PB=PA+PC,如圖2中,連接AC、在PB上截取PN=PC,連接CN.首先證明△ACB,△PCN都是等邊三角形,再證明△PCA≌△NCB,推出PA=BN,由此即可解決問題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a,b,c滿足(a)20.

(1)ab,c的值.

(2)a,bc為邊能否構(gòu)成三角形?若能構(gòu)成,求出該三角形的周長;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)題意設(shè)未知數(shù),并列出方程(不必求解).

(1)有兩個工程隊(duì),甲隊(duì)人數(shù)30名,乙隊(duì)人數(shù)10名,問怎樣調(diào)整兩隊(duì)的人數(shù),才能使甲隊(duì)的人數(shù)是乙隊(duì)人數(shù)的7倍.

(2)有一個班的同學(xué)準(zhǔn)備去劃船,租了若干條船,他們計(jì)算了一下,如果比原計(jì)劃多租1條船,那么正好每條船坐6人;如果比原計(jì)劃少租1條船,那么正好每條船坐9人.問這個班共有多少名同學(xué)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】陳老師要為他家的長方形餐廳(如圖1)選擇一張餐桌,并且想按如下要求擺放:餐桌一側(cè)靠墻,靠墻對面的桌邊留出寬度不小于80 cm的通道,另兩邊各留出寬度不小于60 cm的通道.那么在圖2的四張餐桌中,其規(guī)格符合要求的餐桌編號是________

1                2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:

(1)(+4)×(-5);         (2)(-0.125)×(-8);

(3)(-2 )×(-);       (4)0×(-13.52);

(5)(-3.25)×(+);       (6)(-1)×a.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個自然數(shù)的立方,可以分裂成若干個連續(xù)奇數(shù)的和。例如:分別可以按如圖所示的方式分裂2個、3個和4個連續(xù)奇數(shù)的和,即=3+5;=7+9+11; =13+15+17+19;…;若也按照此規(guī)律來進(jìn)行分裂,則分裂出的奇數(shù)中,最大的奇數(shù)是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AC=BC=2,C=90°,ADABC的角平分線,DEAB,垂足為E,AD的垂直平分線交AB于點(diǎn)E,則DEF的面積為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O中,AB是直徑,點(diǎn)D是⊙O上的一點(diǎn),點(diǎn)C是 的中點(diǎn),弦CM垂直AB于點(diǎn)F,連接AD,交CF于點(diǎn)P,連接BC,∠DAB=30°.

(1)求∠ABC的度數(shù);
(2)若CM=4 ,求 的長度.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:(1)-13×-0.34××(-13)-×0.34;

(2)31×41-11×41×2-9.5×11.

查看答案和解析>>

同步練習(xí)冊答案