【題目】已知⊙O 的直徑為 4,AB 是⊙O 的弦,∠AOB=120°,點(diǎn) P 在⊙O 上,若點(diǎn) P到直線 AB 的距離為 1,則∠PAB 的度數(shù)為_____.
【答案】15°或 30°或 105°
【解析】
作 OP1⊥AB 交⊙O 于 P1 交 AB 于 H,過(guò)點(diǎn) O 作直線 P2P3∥AB 交⊙O 于 P2,P3.由垂徑定理可得∠AOH=60°,進(jìn)而可得∠OAH=30°,即可求出OH=1,進(jìn)而可知P1,P2,P3 是滿足條件的點(diǎn),根據(jù)圓周角定理求出∠P1AB、∠P3AB、∠P2AB的度數(shù)即可.
如圖作 OP1⊥AB 交⊙O 于 P1 交 AB 于 H,過(guò)點(diǎn) O 作直線 P2P3∥AB 交⊙O 于 P2,P3.
∵∠AOB=120°,OA=OB,OH⊥AB,
∴∠AOH=∠AOB=60°,∠AHO=90°,
∴∠OAH=30°,
∵⊙O 的直徑為 4,
∴OH=OA= 1,
∴HP1=1,
∴直線 AB 與直線 P2P3 之間的結(jié)論距離為 1,
∴P1,P2,P3 是滿足條件的點(diǎn),
∴∠P1AB=∠BOP1=30°,∠P3AB=∠BOP3=15°,
∵P2P3是⊙O的直徑,
∴∠P2AP3=90°,
∴∠P2AB=∠P2AP3+∠P3AB=90°+15°=105°,
故答案為:15°或 30°或 105°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)xOy中,點(diǎn)A(1,0),B(2,0),正六邊形ABCDEF沿x軸正方向無(wú)滑動(dòng)滾動(dòng),每旋轉(zhuǎn)60°為滾動(dòng)1次,那么當(dāng)正六邊形ABCDEF滾動(dòng)2017次時(shí),點(diǎn)F的坐標(biāo)是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),在△ABC中,AB=BC,P為AB邊上一點(diǎn),連接CP,以PA、PC為鄰邊作APCD,AC與PD相交于點(diǎn)E,已知∠ABC=∠AEP=(0°<<90°).
(1)求證: ∠EAP=∠EPA;
(2)APCD是否為矩形?請(qǐng)說(shuō)明理由;
(3)如圖(2),F為BC中點(diǎn),連接FP,將∠AEP繞點(diǎn)E順時(shí)針旋轉(zhuǎn)適當(dāng)?shù)慕嵌?/span>,得到∠MEN(點(diǎn)M、N分別是∠MEN的兩邊與BA、FP延長(zhǎng)線的交點(diǎn)).猜想線段EM與EN之間的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a<0)與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)A,頂點(diǎn)D的坐標(biāo)分別為A(﹣1,0),D(1,m).
(1)當(dāng)OB=OC時(shí),直接寫(xiě)出拋物線的解析式;
(2)直線CD必經(jīng)過(guò)某一定點(diǎn),請(qǐng)你分析理由并求出該定點(diǎn)坐標(biāo);
(3)點(diǎn)P為直線CD上一點(diǎn),當(dāng)以點(diǎn)P,A,B為頂點(diǎn)的三角形是等腰直角三角形時(shí),求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系 xOy 中,拋物線y=ax2+bx+c 上部分點(diǎn)的橫、縱坐標(biāo)間的對(duì)應(yīng)值如表:
則下列結(jié)論正確的是( )
A. 拋物線的開(kāi)口向下
B. 拋物線的頂點(diǎn)坐標(biāo)為(2.5,﹣8.75)
C. 當(dāng) x>4 時(shí),y 隨 x 的增大而減小
D. 拋物線必經(jīng)過(guò)定點(diǎn)(0,﹣5)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,延長(zhǎng)AB至E,使AE=AC,過(guò)E作EF⊥AC于F,EF交BC于G.
(1)求證:BE=CF;
(2)若∠E=40°,求∠AGB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】四邊形 OABC 在圖 1 中的直角坐標(biāo)系中,且OC在 y 軸上,OA∥BC,A、B兩點(diǎn)的坐標(biāo)分別為 A(18,0),B(12,8),動(dòng)點(diǎn) P、Q分別從 O、B兩點(diǎn)出發(fā),點(diǎn) P以每秒2個(gè)單位的速度沿 OA 向終點(diǎn) A 運(yùn)動(dòng),點(diǎn) Q 以每秒1個(gè)單位的速度沿BC向 C運(yùn)動(dòng),當(dāng)點(diǎn) P停止運(yùn)動(dòng)時(shí),點(diǎn) Q 同時(shí)停止運(yùn)動(dòng).動(dòng)點(diǎn) P、Q 運(yùn)動(dòng)時(shí)間為 t(單位:秒).
(1)當(dāng) t 為何值時(shí),四邊形 PABQ 是平行四邊形,請(qǐng)寫(xiě)出推理過(guò)程;
(2)如圖 2,線段 OB、PQ 相交于點(diǎn) D,過(guò)點(diǎn) D 作 DE∥OA,交 AB 于點(diǎn) E,射線 QE 交 x 軸于點(diǎn) F,PF=AO.當(dāng) t 為何值時(shí),△PQF 是等腰三角形?請(qǐng)寫(xiě)出推理過(guò)程;
(3)如圖 3,過(guò) B 作 BG⊥OA 于點(diǎn) G,過(guò)點(diǎn) A 作 AT⊥x 軸于點(diǎn) A,延長(zhǎng) CB 交 AT于點(diǎn) T.將點(diǎn) G 折疊,折痕交邊 AG、BG 于點(diǎn) M、N,使得點(diǎn) G 折疊后落在AT 邊上的點(diǎn)為 G′,求 AG′的最大值和最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2015山東省德州市,24,12分)已知拋物線y=-mx2+4x+2m與x軸交于點(diǎn)A(α,0), B(β,0),且.
(1)求拋物線的解析式.
(2)拋物線的對(duì)稱軸為l,與y軸的交點(diǎn)為C,頂點(diǎn)為D,點(diǎn)C關(guān)于l的對(duì)稱點(diǎn)為E.是否存在x軸上的點(diǎn)M、y軸上的點(diǎn)N,使四邊形DNME的周長(zhǎng)最?若存在,請(qǐng)畫(huà)出圖形(保留作圖痕跡),并求出周長(zhǎng)的最小值;若不存在,請(qǐng)說(shuō)明理由.
(3)若點(diǎn)P在拋物線上,點(diǎn)Q在x軸上,當(dāng)以點(diǎn)D、E、P、Q為頂點(diǎn)的四邊形是平行四邊形時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com