如圖,四邊形ABCD中,AB=BC=2,CD=1,AD=數(shù)學(xué)公式,∠B=90°.
(1)判斷∠D是否是直角,并說明理由.
(2)求四邊形ABCD的面積.

解:(1)連接AC,
∵∠B=90°
∴AC2=BA2+BC2=4+4=8,
∵DA2+CD2=(2+12=8,
∴AC2=DA2+DC2,
∴△ADC是直角三角形,即∠D是直角;

(2)∵S四邊形ABCD=S△ABC+S△ADC
∴S四邊形ABCD=AB•BC+AD•CD=×2×2+××1=2+
分析:(1)連接AC,根據(jù)勾股定理可知AC2=BA2+BC2,再根據(jù)AC2=DA2+DC2即可得出結(jié)論;
(2)根據(jù)S四邊形ABCD=S△ABC+S△ADC即可得出結(jié)論.
點評:本題考查的是勾股定理的逆定理,熟知如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形就是直角三角形是解答此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD的對角線AC與BD互相垂直平分于點O,設(shè)AC=2a,BD=2b,請推導(dǎo)這個四邊形的性質(zhì).(至少3條)
(提示:平面圖形的性質(zhì)通常從它的邊、內(nèi)角、對角線、周長、面積等入手.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD的對角線AC、BD交于點P,過點P作直線交AD于點E,交BC于點F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長線上的一點,且AC=CE,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD是正方形,點E是BC的中點,∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點E是BC的中點”改為“E是BC上任意一點”,其余條件不變,則結(jié)論AE=EF還成立嗎?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案