如圖,在平面直角坐標系中,拋物線數(shù)學公式經過A(0,-4)、B(x1,0)、C(x2,0),且x2-x1=5.
(1)求拋物線的解析式;
(2)在拋物線上是否存在一點D,使得△DBO是以OB為底邊的等腰三角形?若存在,求出點D的坐標,并判斷這個等腰三角形是否為等腰直角三角形?若不存在,請說明理由;
(3)連接AB,P為線段AB上的一個動點(點P與A、B不重合),過P作x軸的垂線與這個二次函數(shù)的圖象交于點E,設線段PE的長為h,點P的橫坐標為x,求h與x之間的函數(shù)關系式,并寫出自變量x的取值范圍.

解:(1)∵拋物線經過A(0,-4),
∴c=-4,
又∵x1、x2是方程-x2+bx+c=0的兩個根,
∴x1+x2=b,x1x2=-c,
由已知得:(x2-x12=25,
又(x2-x12=(x2+x12-4x1x2=b2-24=25,
解得:b=±
當b=時,拋物線與x軸的交點在x軸的正半軸上,不合題意,舍去.
∴b=-,
故拋物線的解析式為:
(2)由拋物線解析式可得:點B坐標為:(-6,0),則D是直線x=-3與拋物線的交點,即可得點D坐標為:(-3,4),
此時BO上的高等于4,而BO=6,即BO上的高不等于斜邊BO的一半,
故△OBD不是等腰直角三角形.
(3)由拋物線解析式可得點A(-1,0),點B(-6,0),
故可得直線AB的解析式為:y=-x-4,
則可得:點E的縱坐標為:-x-4,點H的縱坐標為:-x2-x-4,
(-6<x<0).
分析:(1)把A(0,-4)代入可求c,運用兩根關系及x2-x1=5,對式子合理變形,求b;
(2)作BC的中垂線,則與拋物線的交點即是要找的位置,然后驗證△DBO是否為等腰三角形.
(3)根據(jù)A、B的坐標可得出直線AB的解析式,然后可得出點E及點H的縱坐標,繼而可表示出h的長度.
點評:此題屬于二次函數(shù)綜合題,涉及了待定系數(shù)法求函數(shù)解析式、根與系數(shù)的關系及等腰直角三角形的判定,解答本題的關鍵是熟練掌握一些基本知識,達到融會貫通的程度.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標;
(2)當∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標xoy中,以坐標原點O為圓心,3為半徑畫圓,從此圓內(包括邊界)的所有整數(shù)點(橫、縱坐標均為整數(shù))中任意選取一個點,其橫、縱坐標之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,等腰梯形ABCD的下底在x軸上,且B點坐標為(4,0),D點坐標為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當△OCP是等腰三角形時,請寫出點P的坐標(不要求過程,只需寫出結果).

查看答案和解析>>

同步練習冊答案