【題目】【操作發(fā)現(xiàn)】如圖 1,△ABC 為等邊三角形,點 D 為 AB 邊上的一點,∠DCE=30°,將線段 CD 繞點 C 順時針旋轉(zhuǎn) 60°得到線段 CF,連接 AF、EF. 請直接 寫出下列結(jié)果:
① ∠EAF的度數(shù)為__________;
② DE與EF之間的數(shù)量關(guān)系為__________;
【類比探究】如圖 2,△ABC 為等腰直角三角形,∠ACB=90°,點 D 為 AB 邊上的一點∠DCE=45°,將線段 CD 繞點 C 順時針旋轉(zhuǎn) 90°得到線段 CF,連接 AF、EF.
①則∠EAF的度數(shù)為__________;
② 線段 AE,ED,DB 之間有什么數(shù)量關(guān)系?請說明理由;
【實際應用】如圖 3,△ABC 是一個三角形的余料.小張同學量得∠ACB=120°,AC=BC, 他在邊 BC 上取了 D、E 兩點,并量得∠BCD=15°、∠DCE=60°,這樣 CD、CE 將△
ABC 分成三個小三角形,請求△BCD、△DCE、△ACE 這三個三角形的面積之比.
【答案】 120° DE=EF 90°
【解析】試題分析:(1)①由等邊三角形的性質(zhì)得出AC=BC,∠BAC=∠B=60°,求出∠ACF=∠BCD,證明△ACF≌△BCD,得出∠CAF=∠B=60°,求出∠EAF=∠BAC+∠CAF=120°;
②證出∠DCE=∠FCE,由SAS證明△DCE≌△FCE,得出DE=EF即可;
(2)①由等腰直角三角形的性質(zhì)得出AC=BC,∠BAC=∠B=45°,證出∠ACF=∠BCD,由SAS證明△ACF≌△BCD,得出∠CAF=∠B=45°,AF=DB,求出∠EAF=∠BAC+∠CAF=90°;
②證出∠DCE=∠FCE,由SAS證明△DCE≌△FCE,得出DE=EF;在Rt△AEF中,由勾股定理得出AE2+AF2=EF2,即可得出結(jié)論.
(3)把△BCD繞點C順時針旋轉(zhuǎn)120°得到△ACF,則可得△ACF≌△BCD,△FCE≌△DEC,得到AF=BD,EF=ED,△AEF是含30°角的直角三角形,S△BCD:S△DCE:S△ACE=BD:ED:AE= AF:EF:AE,即可得到答案.
試題解析:解:(1)①∵△ABC是等邊三角形,∴AC=BC,∠BAC=∠B=60°.∵∠DCF=60°,∴∠ACF=∠BCD.在△ACF和△BCD中, ,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=60°,∴∠EAF=∠BAC+∠CAF=120°;
②DE=EF.理由如下:
∵∠DCF=60°,∠DCE=30°,∴∠FCE=60°﹣30°=30°,∴∠DCE=∠FCE.在△DCE和△FCE中, ,∴△DCE≌△FCE(SAS),∴DE=EF;
(2)①∵△ABC是等腰直角三角形,∠ACB=90°,∴AC=BC,∠BAC=∠B=45°.∵∠DCF=90°,∴∠ACF=∠BCD.在△ACF和△BCD中, ,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=45°,AF=DB,∴∠EAF=∠BAC+∠CAF=90°;
②AE2+DB2=DE2,理由如下:
∵∠DCF=90°,∠DCE=45°,∴∠FCE=90°﹣45°=45°,∴∠DCE=∠FCE.在△DCE和△FCE中, ,∴△DCE≌△FCE(SAS),∴DE=EF.在Rt△AEF中,AE2+AF2=EF2.又∵AF=DB,∴AE2+DB2=DE2.
(3)【實際應用】把△BCD繞點C順時針旋轉(zhuǎn)120°得到△ACF,則△ACF≌△BCD.∵∠ACB=120°,AC=BC ,∴∠B=∠C=30°,∴∠CDE=∠B+∠BCD=30°+15°=45°,∴∠CDB=180°-45°=135°.∵△ACF≌△BCD,∴AE=DB,FC=DC,∠FCA=∠BCD=15°,∠FAC=∠B=30°,∠ACF=∠BDC=135°,∴∠FCE=∠ECD=60°.∵FC=DC,EC=EC,∴△FCE≌△DEC,∴EF=ED,∠CFE=∠CDE=45°,∴∠AFE=135°-45°=90°.∵∠FAE=30°+30°=60°,∴∠AEF=30°,∴AF:EF:AE=1: :2,∴S△BCD:S△DCE:S△ACE=BD:ED:AE= AF:EF:AE=1: :2.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,動點P按圖中箭頭所示方向從原點出發(fā),第1次運動到P1(1,1),第2次接著運動到點P2(2,0),第3次接著運動到點P3(3,-2),…,按這的運動規(guī)律,點P2019的坐標是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB=AC,點D是直線BC上一點(不與B、C重合),以AD為一邊在AD的右側(cè)作△ADE,使AD=AE,∠DAE =∠BAC,連接CE.
(1)如圖1,當點D在線段BC上,如果∠BAC=90°,則∠BCE=________度;
(2)設(shè),.
①如圖2,當點在線段BC上移動,則,之間有怎樣的數(shù)量關(guān)系?請說明理由;
②當點在直線BC上移動,則,之間有怎樣的數(shù)量關(guān)系?請直接寫出你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,的平分線交于,是的垂直平分線,點為垂足,的延長線與的延長線相交于點,連結(jié),已知,,則圖中長為4的線段有( )
A. 5條B. 4條C. 3條D. 2條
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在△ABC 中,∠C=90°,∠BAC 的平分線 AD 交 BC于點 D,過點 D 作 DE⊥AD 交 AB 于點 E,以 AE 為直徑作⊙O.
(1)求證:BC 是⊙O 的切線;
(2)若 AC=3,BC=4,求 BE 的長.
(3)在(2)的條件中,求 cos∠EAD 的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,對稱軸為直線x=1的拋物線y=x2+bx+c,與x軸交于A、B兩點(點A在點B的左側(cè)),且點A坐標為(-1,0).又P是拋物線上位于第一象限的點,直線AP與y軸交于點D,與拋物線對稱軸交于點E,點C與坐標原點O關(guān)于該對稱軸成軸對稱.
(1)求點 B 的坐標和拋物線的表達式;
(2)當 AE:EP=1:4 時,求點 E 的坐標;
(3)如圖 2,在(2)的條件下,將線段 OC 繞點 O 逆時針旋轉(zhuǎn)得到 OC ′,旋轉(zhuǎn)角為 α(0°<α<90°),連接 C ′D、C′B,求 C ′B+ C′D 的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖1是由大小相同的小立方塊搭成的幾何體,請在圖2的方格中畫出從上面和左面看到的該幾何體的形狀圖.(只需用2B鉛筆將虛線化為實線)
(2)若要用大小相同的小立方塊搭一個幾何體,使得它從上面和左面看到的形狀圖與你在圖2方格中所畫的形狀圖相同,則搭這樣的一個幾何體最多需要 個小立方塊.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】自我國實施“限塑令”起,開始有償使用環(huán)保購物袋,為了滿足市場需求,某廠家生產(chǎn)A、B兩種款式的布質(zhì)環(huán)保購物袋,每天生產(chǎn)4500個,兩種購物袋的成本和售價如下表,若設(shè)每天生產(chǎn)A種購物袋 x個.
(1)用含x的整式表示每天的生產(chǎn)成本,并進行化簡;
(2)用含x的整式表示每天獲得的利潤,并進行化簡(利潤=售價-成本);
(3)當x=1500時,求每天的生產(chǎn)成本與每天獲得的利潤.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AC=BC,射線AP交邊BC于點E,點D是射線AP上一點,連接BD、CD .
(1)如圖1,當∠CAB=45°,∠BDP=90°時,請直接寫出DA與DB、DC之間滿足的數(shù)量關(guān)系為: .
(2)如圖2,當∠CAB=30°,∠BDP=60°時,試猜想:DA與DB、DC之間具有怎樣的數(shù)量關(guān)系?并說明理由.
(3)如圖3,當∠ACB=,∠BDP=,若與之間滿足,則DA與DB、DC之間的數(shù)量關(guān)系為 .(請直接寫出結(jié)論)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com