如圖,△ABC中,AB=BC,AD⊥BC于點D,DE∥AB交AC于點E,過點C在△ABC外部作CF∥AB,AF⊥CF于點F.連接EF.
(1)求證:△AFC≌△ADC;
(2)判斷四邊形DCFE的形狀,并說明理由.
(1)證明詳見解析;(2)四邊形DCFE是菱形,理由詳見解析.
【解析】
試題分析:此題主要考查了全等三角形的判定與性質以及平行四邊形和菱形的判定等知識,根據已知得出DE∥FC是解題關鍵.(1)首先利用平行線的性質得出∠FCE=∠BCA,進而利用全等三角形的判定方法AAS得出△AFC≌△ADC;(2)利用利用(1)中得結論易得出DE=FC,DE//FC,故四邊形DCFE是平行四邊形;再由DE=DC可判定四邊形DCFE是菱形.
試題解析:
(1)證明:∵AB=BC,
∴∠BAC=∠BCA,
∵DE∥AB,CF∥AB,
∴DE∥FC,∠BAC=∠DEC,
∴∠DEC=∠BCA,∠DEC=∠FCE,
∴∠FCE=∠BCA,
在△AFC和△ADC中,
∴△AFC≌△ADC(AAS);
四邊形DCFE是菱形;理由如下:
∵∠DEC=∠BCA,DC=FC,
∴DE=DC,DE=FC,
又∵DE//FC,
∴四邊形DCFE是平行四邊形,
又∵DE=DC,
∴平行四邊形DCFE是菱形.
考點:1、全等三角形的判定與性質;2、等腰三角形的性質;3、菱形的判定.
科目:初中數學 來源: 題型:
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com