(2004•無錫)已知⊙O1與⊙O2內(nèi)切,它們的半徑分別為2和3,則這兩圓的圓心距d滿足( )
A.d=5
B.d=1
C.1<d<5
D.d>5
【答案】分析:根據(jù)位置關(guān)系來得到兩圓的數(shù)量關(guān)系.設(shè)兩圓的半徑分別為R和r,且R≥r,圓心距為d:外離,則d>R+r;外切,則d=R+r;相交,則R-r<d<R+r;內(nèi)切,則d=R-r;內(nèi)含,則d<R-r.
解答:解:根據(jù)兩圓內(nèi)切時,圓心距等于兩圓半徑的差,則圓心距d=3-2=1.
故選B.
點評:本題考查了兩圓的位置關(guān)系與數(shù)量之間的聯(lián)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2004年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2004•無錫)已知直線y=-2x+b(b≠0)與x軸交于點A,與y軸交于點B;一拋物線的解析式為y=x2-(b+10)x+c.
(1)若該拋物線過點B,且它的頂點P在直線y=-2x+b上,試確定這條拋物線的解析式;
(2)過點B作直線BC⊥AB交x軸于點C,若拋物線的對稱軸恰好過C點,試確定直線y=-2x+b的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年江蘇省無錫市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2004•無錫)已知直線y=-2x+b(b≠0)與x軸交于點A,與y軸交于點B;一拋物線的解析式為y=x2-(b+10)x+c.
(1)若該拋物線過點B,且它的頂點P在直線y=-2x+b上,試確定這條拋物線的解析式;
(2)過點B作直線BC⊥AB交x軸于點C,若拋物線的對稱軸恰好過C點,試確定直線y=-2x+b的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年全國中考數(shù)學(xué)試題匯編《圖形的相似》(04)(解析版) 題型:解答題

(2004•無錫)已知:如圖,Rt△ABC中,∠B=90°,∠A=30°,BC=6cm.點O從A點出發(fā),沿AB以每秒cm的速度向B點方向運動,當(dāng)點O運動了t秒(t>0)時,以O(shè)點為圓心的圓與邊AC相切于點D,與邊AB相交于E、F兩點.過E作EG⊥DE交射線BC于G.
(1)若E與B不重合,問t為何值時,△BEG與△DEG相似?
(2)問:當(dāng)t在什么范圍內(nèi)時,點G在線段BC上當(dāng)t在什么范圍內(nèi)時,點G在線段BC的延長線上?
(3)當(dāng)點G在線段BC上(不包括端點B、C)時,求四邊形CDEG的面積S(cm2)關(guān)于時間t(秒)的函數(shù)關(guān)系式,并問點O運動了幾秒鐘時,S取得最大值最大值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年全國中考數(shù)學(xué)試題匯編《圓》(10)(解析版) 題型:填空題

(2004•無錫)已知圓錐母線長6cm,底面直徑為5cm,則圓錐側(cè)面積為    cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2004•無錫)已知:如圖,Rt△ABC中,∠B=90°,∠A=30°,BC=6cm.點O從A點出發(fā),沿AB以每秒cm的速度向B點方向運動,當(dāng)點O運動了t秒(t>0)時,以O(shè)點為圓心的圓與邊AC相切于點D,與邊AB相交于E、F兩點.過E作EG⊥DE交射線BC于G.
(1)若E與B不重合,問t為何值時,△BEG與△DEG相似?
(2)問:當(dāng)t在什么范圍內(nèi)時,點G在線段BC上當(dāng)t在什么范圍內(nèi)時,點G在線段BC的延長線上?
(3)當(dāng)點G在線段BC上(不包括端點B、C)時,求四邊形CDEG的面積S(cm2)關(guān)于時間t(秒)的函數(shù)關(guān)系式,并問點O運動了幾秒鐘時,S取得最大值最大值為多少?

查看答案和解析>>

同步練習(xí)冊答案