【題目】如圖,AB為⊙O的直徑,AC、DC為弦,∠ACD=60°,P為AB延長(zhǎng)線上的點(diǎn),∠APD=30°.
(1)求證:DP是⊙O的切線;
(2)若⊙O的半徑為3cm,求圖中陰影部分的面積.
【答案】
(1)證明:連接OD,
∵∠ACD=60°,
∴由圓周角定理得:∠AOD=2∠ACD=120°,
∴∠DOP=180°﹣120°=60°,
∵∠APD=30°,
∴∠ODP=180°﹣30°﹣60°=90°,
∴OD⊥DP,
∵OD為半徑,
∴DP是⊙O切線
(2)解:∵∠P=30°,∠ODP=90°,OD=3cm,
∴OP=6cm,由勾股定理得:DP=3 cm,
∴圖中陰影部分的面積S=S△ODP﹣S扇形DOB= ×3×3 ﹣ =( ﹣ π)cm2
【解析】(1)連接OD,求出∠AOD,求出∠DOB,求出∠ODP,根據(jù)切線判定推出即可;(2)求出OP、DP長(zhǎng),分別求出扇形DOB和三角形ODP面積,即可求出答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算下列各題.
(1)計(jì)算:|﹣5|+ ×2﹣1;
(2)化簡(jiǎn):a(2﹣a)+(a+1)(a﹣1).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D、E分別在邊AB、AC上,如果DE∥BC,且∠DCE=∠B,那么下列說(shuō)法中,錯(cuò)誤的是( )
A.△ADE∽△ABC
B.△ADE∽△ACD
C.△ADE∽△DCB
D.△DEC∽△CDB
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司研發(fā)了一款成本為60元的保溫飯盒,投放市場(chǎng)進(jìn)行試銷(xiāo)售,按物價(jià)部門(mén)規(guī)定,其銷(xiāo)售單價(jià)不低于成本,但銷(xiāo)售利潤(rùn)不高于65%,市場(chǎng)調(diào)研發(fā)現(xiàn),保溫飯盒每天的銷(xiāo)售數(shù)量y(個(gè))與銷(xiāo)售單價(jià)x(元)滿足一次函數(shù)關(guān)系;當(dāng)銷(xiāo)售單價(jià)為70元時(shí),銷(xiāo)售數(shù)量為160個(gè);當(dāng)銷(xiāo)售單價(jià)為80元時(shí),銷(xiāo)售數(shù)量為140個(gè)(利潤(rùn)率= )
(1)求y與x之間的函數(shù)關(guān)系式;
(2)當(dāng)銷(xiāo)售單價(jià)定為多少元時(shí),公司每天獲得利潤(rùn)最大,最大利潤(rùn)為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為4的正方形ABCD中,動(dòng)點(diǎn)P從A點(diǎn)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿AB向B點(diǎn)運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從B點(diǎn)出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿BC→CD方向運(yùn)動(dòng),當(dāng)P運(yùn)動(dòng)到B點(diǎn)時(shí),P、Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)P點(diǎn)運(yùn)動(dòng)的時(shí)間為t,△APQ的面積為S,則S與t的函數(shù)關(guān)系的圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,則下列結(jié)論:①abc<0,②b<a+c,③4a+2b+c>0,④2c<3b,⑤a+b<m(am+b)(m≠1)中正確的是( )
A.②④⑤
B.①②④
C.①③④
D.①③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,小河上有一拱橋,拱橋及河道的截面輪廓線由拋物線的一部分ACB和矩形的三邊AE,ED,DB組成,已知河底ED是水平的,ED=16米,AE=8米,拋物線的頂點(diǎn)C到ED的距離是11米,以ED所在的直線為x軸,拋物線的對(duì)稱軸為y軸建立平面直角坐標(biāo)系.
(1)求拋物線的解析式;
(2)已知從某時(shí)刻開(kāi)始的40小時(shí)內(nèi),水面與河底ED的距離h(單位:米)隨時(shí)間t(單位:時(shí))的變化滿足函數(shù)關(guān)系h=﹣ (t﹣19)2+8(0≤t≤40),且當(dāng)水面到頂點(diǎn)C的距離不大于5米時(shí),需禁止船只通行,請(qǐng)通過(guò)計(jì)算說(shuō)明:在這一時(shí)段內(nèi),需多少小時(shí)禁止船只通行?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一座拋物線形拱橋,校下面在正常水位時(shí)AB寬20米,水位上升3米就達(dá)到警戒線CD,這時(shí)水面寬度為10米.
(1)在如圖的坐標(biāo)系中,求拋物線的表達(dá)式;
(2)若洪水到來(lái)是水位以0.2米/時(shí)的速度上升,從正常水位開(kāi)始,再過(guò)幾小時(shí)能到達(dá)橋面?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市某中學(xué)組織學(xué)生進(jìn)行“低碳生活”知識(shí)競(jìng)賽,為了了解本次競(jìng)賽的成績(jī),把學(xué)生成績(jī)分成A、B、C、D、E五個(gè)等級(jí),并繪制如圖的統(tǒng)計(jì)圖(不完整)統(tǒng)計(jì)成績(jī).若扇形的半徑為2cm,則C等級(jí)所在的扇形的面積是cm2 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com