如圖,⊙M與y軸的正半軸相切于點(diǎn)C,與x軸交于A(x1,0)、B(x2,0)兩點(diǎn),且x2>x1>0,拋物線y=
1
2
(x2-5x+2m)經(jīng)過(guò)A、B、C三點(diǎn).
(1)求m的值;
(2)求sin∠AMB的值;
(3)在圖中的曲線上是否存在點(diǎn)P,使以P、A、C為頂點(diǎn)的三角形與△COA相似?若存在,求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(1)如圖:過(guò)點(diǎn)M作MD⊥AB于點(diǎn)D,
當(dāng)x=0時(shí),y=m,∴C(0,m)
當(dāng)y=0時(shí),有
1
2
x2-
5
2
x+m=0
∴x1+x2=5,x1x2=2m,
AD=
1
2
AB=
1
2
(x2-x1)=
1
2
(x2+x1)2-4x1x2

=
1
2
25-8m

∵⊙M與y軸相切于點(diǎn)C,
∵AB=0B-OA=x2-x1,
∴OD=AD+OA=
1
2
AB+OA=
x2-x1
2
+x1=
1
2
(x1+x2),
∴CM=AM=OD=
1
2
(x1+x2)=
5
2

DM=OC=m,
在直角三角形AMD中,
AM2=AD2+MD2,
即:
25
4
=
25-8m
4
+m2
解得:m1=0,m2=2.
∵m>0,
∴m=2.

(2)∵m=2,
∴y=
1
2
x2-
5
2
x+2
∴C(0,2)
當(dāng)y=0時(shí),
1
2
x2-
5
2
x+2=0
解得:x1=1,x2=4,
∴A(1,0),B(4,0),
∴AB=3,AD=
3
2
,AM=
5
2
,MD=2
∵S△ABM=
1
2
AB•MD=
1
2
AM•BM•sin∠AMB,
1
2
×3×2=
1
2
×
5
2
×
5
2
×sin∠AMB,
∴sin∠AMB=
24
25


(3)如圖:
分別過(guò)點(diǎn)A,C作AC的垂線交拋物線于P1和P2,
∵A(1,0),C(0,2),AC=
5

∴AC:y=-2x+2
AP1:y=
1
2
x-
1
2

AP2:y=
1
2
x+2,
y=
1
2
x-
1
2
y=
1
2
x2-
5
2
x+2
得:p1(5,2),AP1=2
5
,
AC
AP1
=
5
2
5
=
1
2
=
OA
OC
,
∴△P1AC△COA.
y=
1
2
x+2
y=
1
2
x2-
5
2
x+2
得:P2(6,5),CP2=3
5
,
AC
CP2
=
5
3
5
=
1
3
1
2

∴△P2AC與△AOC不相似.
因此,存在點(diǎn)P(5,2).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,已知矩形ABCD的頂點(diǎn)A與點(diǎn)O重合,AD、AB分別在x軸、y軸上,且AD=2,AB=3;拋物線y=-x2+bx+c經(jīng)過(guò)坐標(biāo)原點(diǎn)O和x軸上另一點(diǎn)E(4,0)
(1)當(dāng)x取何值時(shí),該拋物線取最大值?該拋物線的最大值是多少?
(2)將矩形ABCD以每秒1個(gè)單位長(zhǎng)度的速度從圖1所示的位置沿x軸的正方向勻速平行移動(dòng),同時(shí)一動(dòng)點(diǎn)P也以相同的速度從點(diǎn)A出發(fā)向B勻速移動(dòng).設(shè)它們運(yùn)動(dòng)的時(shí)間為t秒(0≤t≤3),直線AB與該拋物線的交點(diǎn)為N(如圖2所示).
①當(dāng)t=
11
4
時(shí),判斷點(diǎn)P是否在直線ME上,并說(shuō)明理由;
②以P、N、C、D為頂點(diǎn)的多邊形面積是否可能為5?若有可能,求出此時(shí)N點(diǎn)的坐標(biāo);若無(wú)可能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在Rt△ABC中,∠A=90°,tanB=
3
4
,點(diǎn)P在線段AB上運(yùn)動(dòng),點(diǎn)Q、R分別在線段BC,AC上,且使得四邊形APQR是矩形.設(shè)AP的長(zhǎng)是x,矩形APQR面積為y,已知y是x的函數(shù),其圖象是過(guò)點(diǎn)(12,36)的拋物線上的一部分.
(1)求AB的長(zhǎng);
(2)當(dāng)AP為何值時(shí),矩形APQR的面積最大,并求出最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

圖中是拋物線形拱橋,當(dāng)水面寬為4米時(shí),拱頂距離水面2米;當(dāng)水面高度下降1米時(shí),水面寬度為多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,一次函數(shù)y=x+k圖象過(guò)點(diǎn)A(1,0),交y軸于點(diǎn)B,C為y軸負(fù)半軸上一點(diǎn),且OB=
1
2
BC,過(guò)A,C兩點(diǎn)的拋物線交直線AB于點(diǎn)D,且CDx軸.
(1)求這條拋物線的解析式;
(2)直接寫(xiě)出使一次函數(shù)值小于二次函數(shù)值時(shí)x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,矩形ABCD的長(zhǎng)、寬分別為3和2,OB=2,點(diǎn)E的坐標(biāo)為(3,4)連接AE、ED.
(1)求經(jīng)過(guò)A、E、D三點(diǎn)的拋物線的解析式.
(2)以原點(diǎn)為位似中心,將五邊形ABCDE放大.
①若放大后的五邊形的邊長(zhǎng)是原五邊形對(duì)應(yīng)邊長(zhǎng)的2倍,請(qǐng)?jiān)诰W(wǎng)格中畫(huà)出放大后的五邊形A2B2C2D2E2,并直接寫(xiě)出經(jīng)過(guò)A2、D2、E2三點(diǎn)的拋物線的解析式:______;
②若放大后的五邊形的邊長(zhǎng)是原五邊形對(duì)應(yīng)邊長(zhǎng)的k倍,請(qǐng)你直接寫(xiě)出經(jīng)過(guò)Ak、Dk、Ek三點(diǎn)的拋物線的解析式:______(用含k的字母表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,用長(zhǎng)20m的籬笆,一面靠墻圍成一個(gè)長(zhǎng)方形的園子,怎么圍才能使園子的面積最大?最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知直線y=-x+4分別交x軸、y軸于點(diǎn)A、C,過(guò)A、C兩點(diǎn)的拋物線y=ax2-2ax+c交x軸于另一點(diǎn)B.
(1)求該拋物線的解析式;
(2)若動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),以每秒2個(gè)單位長(zhǎng)度沿線段BA方向運(yùn)動(dòng),同時(shí)動(dòng)直線l從x軸出發(fā),以每秒1個(gè)單位長(zhǎng)度沿y軸方向平行移動(dòng),直線l交AC與D,交BC于E,當(dāng)點(diǎn)Q運(yùn)動(dòng)到點(diǎn)A時(shí),兩者都停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒,△QED的面積為S.
①求S與t的函數(shù)關(guān)系式:并探究:當(dāng)t為何值時(shí),S有最大值為多少?
②在點(diǎn)Q及直線l的運(yùn)動(dòng)過(guò)程中,是否存在△QED為直角三角形?若存在,請(qǐng)求t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某公司準(zhǔn)備投資開(kāi)發(fā)A、B兩種新產(chǎn)品,通過(guò)市場(chǎng)調(diào)研發(fā)現(xiàn):
(1)若單獨(dú)投資A種產(chǎn)品,則所獲利潤(rùn)yA(萬(wàn)元)與投資金額x(萬(wàn)元)之間滿足正比例函數(shù)關(guān)系:yA=kx;
(2)若單獨(dú)投資B種產(chǎn)品,則所獲利潤(rùn)yB(萬(wàn)元)與投資金額x(萬(wàn)元)之間滿足二次函數(shù)關(guān)系:yB=ax2+bx.
(3)根據(jù)公司信息部的報(bào)告,yA,yB(萬(wàn)元)與投資金額x(萬(wàn)元)的部分對(duì)應(yīng)值如下表所示:
x15
yA0.84
yB3.815
(1)填空:yA=______;yB=______;
(2)若公司準(zhǔn)備投資20萬(wàn)元同時(shí)開(kāi)發(fā)A、B兩種新產(chǎn)品,設(shè)公司所獲得的總利潤(rùn)為W(萬(wàn)元),試寫(xiě)出W與某種產(chǎn)品的投資金額x(萬(wàn)元)之間的函數(shù)關(guān)系式;
(3)請(qǐng)你設(shè)計(jì)一個(gè)在(2)中能獲得最大利潤(rùn)的投資方案,并求出按此方案能獲得的最大利潤(rùn)是多少萬(wàn)元?

查看答案和解析>>

同步練習(xí)冊(cè)答案