【題目】(2016湖北省荊州市第24題)已知在關于x的分式方程①和一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0②中,k、m、n均為實數(shù),方程①的根為非負數(shù).
(1)求k的取值范圍;
(2)當方程②有兩個整數(shù)根x1、x2,k為整數(shù),且k=m+2,n=1時,求方程②的整數(shù)根;
(3)當方程②有兩個實數(shù)根x1、x2,滿足x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),且k為負整數(shù)時,試判斷|m|≤2是否成立?請說明理由.
【答案】(1)、k≥﹣1且k≠1且k≠2;(2)、x=0、1、2、3;(3)、不成立;理由見解析.
【解析】
試題分析:(1)、先解出分式方程①的解,根據(jù)分式的意義和方程①的根為非負數(shù)得出k的取值;(2)、先把k=m+2,n=1代入方程②化簡,由方程②有兩個整數(shù)實根得△是完全平方數(shù),列等式得出關于m的等式,由根與系數(shù)的關系和兩個整數(shù)根x1、x2得出m=1和﹣1,分別代入方程后解出即可;(3)、根據(jù)(1)中k的取值和k為負整數(shù)得出k=﹣1,化簡已知所給的等式,并將兩根和與積代入計算求出m的值,做出判斷.
試題解析:(1)、∵關于x的分式方程的根為非負數(shù), ∴x≥0且x≠1,
又∵x=≥0,且≠1, ∴解得k≥﹣1且k≠1,
又∵一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0中2﹣k≠0, ∴k≠2,
綜上可得:k≥﹣1且k≠1且k≠2;
(2)、∵一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0有兩個整數(shù)根x1、x2,且k=m+2,n=1時,
∴把k=m+2,n=1代入原方程得:﹣mx2+3mx+(1﹣m)=0,即:mx2﹣3mx+m﹣1=0,
∴△≥0,即△=(﹣3m)2﹣4m(m﹣1),且m≠0, ∴△=9m2﹣4m(m﹣1)=m(5m+4),
∵x1、x2是整數(shù),k、m都是整數(shù), ∵x1+x2=3,x1x2==1﹣, ∴1﹣為整數(shù),
∴m=1或﹣1, ∴把m=1代入方程mx2﹣3mx+m﹣1=0得:x2﹣3x+1﹣1=0, x2﹣3x=0,
x(x﹣3)=0, x1=0,x2=3;
把m=﹣1代入方程mx2﹣3mx+m﹣1=0得:﹣x2+3x﹣2=0, x2﹣3x+2=0, (x﹣1)(x﹣2)=0, x1=1,x2=2;
(3)|m|≤2不成立,理由是:
由(1)知:k≥﹣1且k≠1且k≠2, ∵k是負整數(shù), ∴k=﹣1,
(2﹣k)x2+3mx+(3﹣k)n=0且方程有兩個實數(shù)根x1、x2,
∴x1+x2=﹣==﹣m,x1x2==,
x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k), x12﹣x1k+x22﹣x2k=x1x2﹣x1k﹣x2k+k2,
x12+x22═x1x2+k2, (x1+x2)2﹣2x1x2﹣x1x2=k2, (x1+x2)2﹣3x1x2=k2,
(﹣m)2﹣3×=(﹣1)2, m2﹣4=1, m2=5, m=±, ∴|m|≤2不成立.
科目:初中數(shù)學 來源: 題型:
【題目】
如圖,在矩形OABC中,OA=3,OC=2,F(xiàn)是AB上的一個動點(F不與A,B重合),過點F的反比例函數(shù)的圖象與BC邊交于點E.
⑴當F為AB的中點時,求該函數(shù)的解析式;
⑵當k為何值時,△EFA的面積最大,最大面積是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列事件是必然事件的是( 。
A. 明天太陽從西邊升起
B. 擲出一枚硬幣,正面朝上
C. 打開電視機,正在播放2018俄羅斯世界杯足球賽
D. 任意畫一個三角形,它的內(nèi)角和為180°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列條件中,不能確定兩個三角形全等的條件是( )
A.三條邊對應相等
B.兩角和其中一角的對邊對應相等
C.兩角和它們的夾邊對應相等
D.兩邊和一角對應相等
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
A. 零是正數(shù)不是負數(shù) B. 不是正數(shù)的數(shù)一定是負數(shù)
C. 零既是正數(shù)也是負數(shù) D. 零既不是正數(shù)也不是負數(shù)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有一圓柱,其高為12cm,它的底面半徑為3cm,在圓柱下底面A處有一只螞蟻,它想得到上面B處的食物,則螞蟻經(jīng)過的最短距離為_________.(π取3)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,長方形ABCD,AB=9,AD=4. E為CD邊上一點,CE=6.
(1)求AE的長.
(2)點P從點B出發(fā),以每秒1個單位的速度沿著邊BA向終點A運動,連接PE. 設點P運動的時間為t秒,則當t為何值時,△PAE為等腰三角形?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com