【題目】如圖,已知點(diǎn),,點(diǎn)C是直線AB上異于點(diǎn)B的任一點(diǎn),現(xiàn)以BC為一邊在AB右側(cè)作正方形BCDE,射線OC與直線DE交于點(diǎn)P,若點(diǎn)C的橫坐標(biāo)為m.

求直線AB的函數(shù)表達(dá)式.

若點(diǎn)C在第一象限,且點(diǎn)COP的中點(diǎn),求m的值.

若點(diǎn)COP的三等分點(diǎn)即點(diǎn)COP1:2的兩條線段,請(qǐng)直接寫(xiě)出點(diǎn)C的坐標(biāo).

【答案】(1);(2);(3)

【解析】

(1)利用待定系數(shù)法即可解決問(wèn)題;

(2)如圖,作OG⊥BCG,OH⊥OBH.只要證明△OCG≌△CPD,利用全等三角形的性質(zhì)可得OG=CD,由此構(gòu)建方程即可解決問(wèn)題;

(3)在第一象限和第二象限分兩種情形,分別構(gòu)建方程求出m即可解決問(wèn)題;

解:設(shè)直線AB的解析式為,

,代入得到,

解得,

直線AB的解析式為

如圖,作G,H.

四邊形BCDE是正方形,

,

,,

,

,

,

,

,

,

,

當(dāng)點(diǎn)C中第一象限,時(shí),

:1,

,

,

,

,

C(

當(dāng)點(diǎn)C中第一象限,時(shí),.

,

:2,

,

,

,

,

C(

當(dāng)點(diǎn)C中第二象限,時(shí),.

,

:2,

,

,

,

,

C(,).

當(dāng)點(diǎn)C中第二象限,時(shí),

,

:1,

,

,

C(,

綜上所述,滿足條件的點(diǎn)C坐標(biāo)為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1),,,垂足為AB,,點(diǎn)在線段上以每秒2的速度由點(diǎn)向點(diǎn)運(yùn)動(dòng),同時(shí)點(diǎn)在線段上由點(diǎn)向點(diǎn)運(yùn)動(dòng).它們運(yùn)動(dòng)的時(shí)間為).

1     ,     ;(用的代數(shù)式表示)

2)如點(diǎn)的運(yùn)動(dòng)速度與點(diǎn)的運(yùn)動(dòng)速度相等,當(dāng)時(shí),是否全等,并判斷此時(shí)線段和線段的位置關(guān)系,請(qǐng)分別說(shuō)明理由;

3)如圖(2),將圖(1)中的“,”,改為“”,其他條件不變.設(shè)點(diǎn)的運(yùn)動(dòng)速度為,是否存在有理數(shù),是否全等?若存在,求出相應(yīng)的x、t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】從三角形一個(gè)頂點(diǎn)引出一條射線與對(duì)邊相交,頂點(diǎn)與交點(diǎn)之間的線段把這個(gè)三角形分割成兩個(gè)小三角形,如果分得的兩個(gè)小三角形中一個(gè)為等腰三角形,另一個(gè)與原三角形相似,我們把這條線段叫做這個(gè)三角形的優(yōu)美線.

(1)如圖,在△ABC中,AD為角平分線,∠B=50°,C=30°,求證:AD為△ABC的優(yōu)美線;

(2)在△ABC中,∠B=46°,AD是△ABC的優(yōu)美線,且△ABD是以AB為腰的等腰三角形,求∠BAC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市計(jì)劃購(gòu)進(jìn)一批甲、乙兩種玩具,已知件甲種玩具的進(jìn)價(jià)與件乙種玩具的進(jìn)價(jià)的和為元,件甲種玩具的進(jìn)價(jià)與件乙種玩具的進(jìn)價(jià)的和為元.

1)求每件甲種、乙種玩具的進(jìn)價(jià)分別是多少元;

2)如果購(gòu)進(jìn)甲種玩具有優(yōu)惠,優(yōu)惠方法是:購(gòu)進(jìn)甲種玩具超過(guò)件,超出部分可以享受折優(yōu)惠,若購(gòu)進(jìn)件甲種玩具需要花費(fèi)元,請(qǐng)你寫(xiě)出的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:如(圖1),點(diǎn)把線段分割成,若以為邊的三角形是一個(gè)直角三角形,則稱(chēng)點(diǎn)是線段的勾股分割點(diǎn).

1)已知點(diǎn)是線段的勾股分割點(diǎn),若,求的長(zhǎng);

2)如(圖2),在等腰直角中, ,點(diǎn)為邊上兩點(diǎn),滿足,求證:點(diǎn)是線段的勾股分割點(diǎn);陽(yáng)陽(yáng)同學(xué)在解決第(2)小題時(shí)遇到了困難,陳老師對(duì)陽(yáng)陽(yáng)說(shuō):要證明勾股分割點(diǎn),則需設(shè)法構(gòu)造直角三角形,你可以把繞點(diǎn)逆時(shí)針旋轉(zhuǎn)試一試.請(qǐng)根據(jù)陳老師的提示完成第(2)小題的證明過(guò)程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,O是等邊三角形ABC內(nèi)一點(diǎn),∠AOB110°,∠BOCm°,DABC外一點(diǎn),且ADC≌△BOC,連接OD.當(dāng)m_____時(shí),AOD是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,AB17,BC21,AC10,動(dòng)點(diǎn)P從點(diǎn)C出發(fā),沿著CB運(yùn)動(dòng),速度為每秒3個(gè)單位,到達(dá)點(diǎn)B時(shí)運(yùn)動(dòng)停止,設(shè)運(yùn)動(dòng)時(shí)間為t秒,請(qǐng)解答下列問(wèn)題:

1)求BC上的高;

2)當(dāng)t為何值時(shí),ACP為等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,直線y=2x+3與直線y=2x1.

1)求兩直線與y軸交點(diǎn)A,B的坐標(biāo);

2)求兩直線交點(diǎn)C的坐標(biāo);

3)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,AB=ACAD⊥BC,CE⊥ABAE=CE.求證:

1△AEF≌△CEB;

2AF=2CD

查看答案和解析>>

同步練習(xí)冊(cè)答案