【題目】已知一個(gè)模型的三視圖如圖,其邊長如圖所示(單位:cm).制作這個(gè)模型的木料密度為150 kg/m3,則這個(gè)模型的質(zhì)量是多少kg?如果油漆這個(gè)模型,每千克油漆可以漆4 m2,需要油漆多少kg?(質(zhì)量=密度×體積)
【答案】這個(gè)模型的質(zhì)量是948 kg;需要油漆5.9 kg.
【解析】
先計(jì)算模型的體積,再根據(jù)質(zhì)量=體積×密度,求質(zhì)量,再根據(jù)需要先求模型的表面積,再求所需油漆的重量.
模型的體積=300×200×100+50×80×80=6 320 000 cm3=6.32 m3,
模型的質(zhì)量=6.32×150=948 kg;
模型的表面積=2(100×200+100×300+200×300)+2(50×80+80×80+50×80)-2×80×80=236 000cm2=23.6 m2,
需要油漆:23.6÷4=5.9 kg.
答:這個(gè)模型的質(zhì)量是948 kg;需要油漆5.9 kg.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,和是兩個(gè)全等的等腰直角三角形,,的頂點(diǎn)E與的斜邊BC的中點(diǎn)重合將繞點(diǎn)E旋轉(zhuǎn),旋轉(zhuǎn)過程中,線段DE與線段AB相交于點(diǎn)P,線段EF與射線CA相交于點(diǎn)Q.
如圖,當(dāng)點(diǎn)Q在線段AC上,且時(shí),和的形狀有什么關(guān)系,請(qǐng)證明;
如圖,當(dāng)點(diǎn)Q在線段CA的延長線上時(shí),和有什么關(guān)系,說明理由;
當(dāng),時(shí),求P、Q兩點(diǎn)間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,熱氣球的探測(cè)器顯示,從熱氣球A看一棟大樓頂部B的俯角為,看這棟大樓底部C的俯角為,熱氣球A的高度為270米,則這棟大樓的高度為______米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個(gè)長方體形的木柜放在墻角處(與墻面和地面均沒有縫隙),有一只螞蟻從柜角A處沿著木柜表面爬到柜角C1處.
(1)請(qǐng)你在備用圖中畫出螞蟻能夠最快到達(dá)目的地的可能路徑;
(2)當(dāng)AB=4,BC=4,CC1=5時(shí),求螞蟻爬過的最短路徑的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=k1x+b的圖象與反比例函數(shù)y= (x<0)的圖象相交于點(diǎn)A(-1,2)、點(diǎn)B(-4,n).
(1)求此一次函數(shù)和反比例函數(shù)的表達(dá)式;
(2)求△AOB的面積;
(3)在x軸上存在一點(diǎn)P,使△PAB的周長最小,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線過原點(diǎn)且與x軸交于點(diǎn)A,頂點(diǎn)的縱坐標(biāo)是.
求拋物線的函數(shù)表達(dá)式及點(diǎn)A坐標(biāo);
根據(jù)圖象回答:當(dāng)x為何值時(shí)拋物線位于x軸上方?
直接寫出所求拋物線先向左平移3個(gè)單位,再向上平移5個(gè)單位所得到拋物線的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,正方形ABCD與正方形AEFG的邊AB、AE(AB<AE)在一條直線上,正方形AEFG以點(diǎn)A為旋轉(zhuǎn)中心逆時(shí)針旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角為α.在旋轉(zhuǎn)過程中,兩個(gè)正方形只有點(diǎn)A重合,其它頂點(diǎn)均不重合,連接BE、DG.(1)當(dāng)正方形AEFG旋轉(zhuǎn)至如圖2所示的位置時(shí),求證:BE=DG;(2)如圖3,如果α=45°,AB=2,AE=4,求點(diǎn)G到BE的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在和中,,,.
如圖1,點(diǎn)D在BC上,求證:,.
將圖1中的繞點(diǎn)C按逆時(shí)針方向旋轉(zhuǎn)到圖2所示的位置,旋轉(zhuǎn)角為為銳角,線段DE,AE,BD的中點(diǎn)分別為P,M,N,連接PM,PN.
請(qǐng)直接寫出線段PM,PN之間的關(guān)系,不需證明;
若,求.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某數(shù)學(xué)活動(dòng)小組選定測(cè)量小河對(duì)岸大樹BC的高度,他們?cè)谛逼?/span>AF上的D處測(cè)得大樹頂端B的仰角是30°,在地面上A處測(cè)得大樹頂端B的仰角是45°.若坡角∠FAE=30°,AD=6m,求大樹的高度.(結(jié)果保留整數(shù),參考數(shù)據(jù):≈1.73)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com