晚上,小亮走在大街上.他發(fā)現(xiàn):當(dāng)他站在大街兩邊的兩盞路燈之間,并且自己被兩邊路燈照在地上的兩個(gè)影子成一直線時(shí),自己右邊的影子長(zhǎng)為3米,左邊的影子長(zhǎng)為1.5米.又知自己身高1.80米,兩盞路燈的高相同,兩盞路燈之間的距離為12米.求路燈的高.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
閱讀下面的材料:
小明遇到一個(gè)問(wèn)題:如圖(1),在□ABCD中,點(diǎn)E是邊BC的中點(diǎn),點(diǎn)F是線段AE上一點(diǎn),BF的延長(zhǎng)線交射線CD于點(diǎn)G.如果,求的值.
他的做法是:過(guò)點(diǎn)E作EH∥AB交BG于點(diǎn)H,則可以得到△BAF∽△HEF.
請(qǐng)你回答:(1)AB和EH的數(shù)量關(guān)系為 ,CG和EH的數(shù)量關(guān)系為 ,的值為 .
(2)如圖(2),在原題的其他條件不變的情況下,如果,那么的值為 (用含a的代數(shù)式表示).
(3)請(qǐng)你參考小明的方法繼續(xù)探究:如圖(3),在四邊形ABCD中,DC∥AB,點(diǎn)E是BC延長(zhǎng)線上一點(diǎn),AE和BD相交于點(diǎn)F. 如果,那么的值為 (用含m,n的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
(1)如圖所示,如果你的位置在點(diǎn)A,你能看到后面那座高大的建筑物嗎?為什么?
(2)如果兩樓之間相距MN=m,兩樓的高各為10m和30m,則當(dāng)你至少與M樓相距多少m時(shí),才能看到后面的N樓?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,△ABC是格點(diǎn)三角形(三角形的三個(gè)頂點(diǎn)都是小正方形的頂點(diǎn)).
(1)若以格點(diǎn)P、A、B為頂點(diǎn)的三角形與△ABC相似但不全等,請(qǐng)作出所有符合要求的點(diǎn)P;
(2)請(qǐng)寫出符合條件格點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖1,菱形ABCD中,∠A=60°,點(diǎn)P從A出發(fā),以2cm/s的速度沿邊AB、BC、CD勻速運(yùn)動(dòng)到D終止,點(diǎn)Q從A與P同時(shí)出發(fā),沿邊AD勻速運(yùn)動(dòng)到D終止,設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t(s).△APQ的面積S(cm2)與t(s)之間函數(shù)關(guān)系的圖象由圖2中的曲線段OE與線段EF、FG給出.
(1)求點(diǎn)Q運(yùn)動(dòng)的速度;
(2)求圖2中線段FG的函數(shù)關(guān)系式;
(3)問(wèn):是否存在這樣的t,使PQ將菱形ABCD的面積恰好分成1:5的兩部分?若存在,求出這樣的t的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,方格紙中每個(gè)小正方形的邊長(zhǎng)為1,△ABC和△DEF的頂點(diǎn)都在方格紙的格點(diǎn)上.
(1)判斷△ABC和△DEF是否相似,并說(shuō)明理由;
(2)P1,P2,P3,P4,P5,D,F(xiàn)是△DEF邊上的7個(gè)格點(diǎn),請(qǐng)?jiān)谶@7個(gè)格點(diǎn)中選取3個(gè)點(diǎn)作為三角形的頂點(diǎn),使構(gòu)成的三角形與△ABC相似(要求寫出2個(gè)符合條件的三角形,并在圖中連結(jié)相應(yīng)線段,不必說(shuō)明理由).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
已知在△ABC中,∠ABC=90°,AB=3,BC=4.點(diǎn)Q是線段AC上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)Q作AC的垂線交線段AB(如圖1)或線段AB的延長(zhǎng)線(如圖2)于點(diǎn)P.
(1)當(dāng)點(diǎn)P在線段AB上時(shí),求證:△APQ∽△ABC;
(2)當(dāng)△PQB為等腰三角形時(shí),求AP的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
已知在△ABC中,∠ABC=90°,AB=3,BC=4.點(diǎn)Q是線段AC上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)Q作AC的垂線交線段AB(如圖1)或線段AB的延長(zhǎng)線(如圖2)于點(diǎn)P.
(1)當(dāng)點(diǎn)P在線段AB上時(shí),求證:△AQP∽△ABC;
(2)當(dāng)△PQB為等腰三角形時(shí),求AP的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
請(qǐng)?jiān)趫D中補(bǔ)全坐標(biāo)系及缺失的部分,并在橫線上寫恰當(dāng)?shù)膬?nèi)容。圖中各點(diǎn)坐標(biāo)如下:A(1,0),B(6,0),C(1,3),D(6,2)。線段AB上有一點(diǎn)M,使△ACM∽△BDM,且相似比不等于1。求出點(diǎn)M的坐標(biāo)并證明你的結(jié)論。
解:M( , )
證明:∵CA⊥AB,DB⊥AB,∴∠CAM=∠DBM= 度。
∵CA=AM=3,DB=BM=2,∴∠ACM=∠AMC( ),∠BDM=∠BMD(同理),
∴∠ACM= (180°- ) =45°。 ∠BDM=45°(同理)。
∴∠ACM=∠BDM。
在△ACM與△BDM中,,
∴△ACM∽△BDM(如果一個(gè)三角形的兩個(gè)角與另一個(gè)三角形的兩個(gè)角對(duì)應(yīng)相等,那么這兩個(gè)三角形相似)。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com