【題目】如圖,在中,邊的垂直平分線交的平分線于點,連接,,過點作于點.
(1)若,求的度數(shù);
(2)若,則_______;(直接寫出結(jié)果)
【答案】(1);(2)
【解析】
(1)首先過點D作DE⊥OB于E,DF⊥OC于F,易證得△DEB≌△DFC(HL),即可得∠BDC=∠EDF,又由∠EOF+∠EDF=180°,即可求得答案;
(2)由(1),可求得∠BDC的度數(shù).
(1)過點D作DE⊥OB,交OB延長線于點E,
∵OD是∠BOC的平分線,
∴DE=DF,
∵DP是BC的垂直平分線,
∴BD=CD,
在Rt△DEB和Rt△DFC中,
,
∴△DEB≌△DFC(HL).
∴∠BDE=∠CDF,
∴∠BDC=∠EDF,
∵∠EOF+∠EDF=180°,
∵∠BOC=60°,
∴∠BDC=∠EDF=120°.
(2)∵∠EOF+∠EDF=180°,
∵∠BOC=α,
∴∠BDC=∠EDF=180°α.
故答案為:180°α.
科目:初中數(shù)學 來源: 題型:
【題目】某超市銷售一種商品,成本每千克40元,規(guī)定每千克售價不低于成本,且不高于80元,經(jīng)市場調(diào)查,每天的銷售量y(千克)與每千克售價x(元)滿足一次函數(shù)關系,部分數(shù)據(jù)如下表:
售價x(元/千克) | 50 | 60 | 70 |
銷售量y(千克) | 100 | 80 | 60 |
(1)求y與x之間的函數(shù)表達式;
(2)設商品每天的總利潤為W(元),則當售價x定為多少元時,廠商每天能獲得最大利潤?最大利潤是多少?
(3)如果超市要獲得每天不低于1350元的利潤,且符合超市自己的規(guī)定,那么該商品每千克售價的取值范圍是多少?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,E為邊BC上的點,且AB=AE,D為線段BE的中點,過點E作EF⊥AE,過點A作AF∥BC,且AF、EF相交于點F.
(1)求證:∠C=∠BAD;
(2)求證:AC=EF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠AOB=30°,M,N分別是OA,OB上的定點,P,Q分別是邊OB,OA上的動點,如果記∠AMP=,∠ONQ=,當MP+PQ+QN最小時,則與的數(shù)量關系是_________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某小區(qū)有一塊長為30 m,寬為24 m的矩形空地,計劃在其中修建兩塊相同的矩形綠地,它們的面積之和為480 m2,兩塊綠地之間及周邊有寬度相等的人行通道,則人行通道的寬度為________m.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】課間,小明拿著老師的等腰直角三角尺玩,不小心掉到兩堆磚塊之間,如圖所示.
(1)求證:△ADC≌△CEB;
(2)已知DE=35cm,請你幫小明求出磚塊的厚度a的大小(每塊磚的厚度相同).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,PT是⊙O的切線,T為切點,PA是割線,交⊙O于A、B兩點,與直徑CT交于點D.已知CD=2,AD=3,BD=4,那PB=___________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com