如圖,在Rt△ABC中,∠ABC=90°,點(diǎn)D在邊AB上,使DB=BC,過點(diǎn)D作EF⊥AC,分別交AC于點(diǎn)E,CB的延長線于點(diǎn)F.
求證:AB=BF.
考點(diǎn):全等三角形的判定與性質(zhì)
專題:證明題
分析:根據(jù)EF⊥AC,得∠F+∠C=90°,再由已知得∠A=∠F,從而AAS證明△FBD≌△ABC,則AB=BF.
解答:證明:∵EF⊥AC,
∴∠F+∠C=90°,
∵∠A+∠C=90°,
∴∠A=∠F,
在△FBD和△ABC中,
∠A=∠F
∠FBD=∠ABC=90°
BD=BC

∴△FBD≌△ABC(AAS),
∴AB=BF.
點(diǎn)評:本題考查了全等三角形的判定和性質(zhì),是基礎(chǔ)知識要熟練掌握.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,邊長不等的正方形依次排列,每個正方形都有一個頂點(diǎn)落在函數(shù)y=x的圖象上,從左向右第3個正方形中的一個頂點(diǎn)A的坐標(biāo)為(8,4),陰影三角形部分的面積從左向右依次記為S1、S2、S3、…、Sn,則Sn的值為
 
.(用含n的代數(shù)式表示,n為正整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

二次函數(shù)y=ax2+bx+c(a≠0)的大致圖象如圖,關(guān)于該二次函數(shù),下列說法錯誤的是(  )
A、函數(shù)有最小值
B、對稱軸是直線x=
1
2
C、當(dāng)x<
1
2
,y隨x的增大而減小
D、當(dāng)-1<x<2時,y>0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

我市荸薺喜獲豐收,某生產(chǎn)基地收獲荸薺40噸.經(jīng)市場調(diào)查,可采用批發(fā)、零售、加工銷售三種銷售方式,這三種銷售方式每噸荸薺的利潤如下表:
銷售方式批發(fā)零售加工銷售
利潤(百元/噸)122230
設(shè)按計劃全部售出后的總利潤為y百元,其中批發(fā)量為x噸,且加工銷售量為15噸.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)若零售量不超過批發(fā)量的4倍,求該生產(chǎn)基地按計劃全部售完荸薺后獲得的最大利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

為倡導(dǎo)低碳生活,綠色出行,某自行車俱樂部利用周末組織“遠(yuǎn)游騎行”活動.自行車隊從甲地出發(fā),途徑乙地短暫休息完成補(bǔ)給后,繼續(xù)騎行至目的地丙地,自行車隊出發(fā)1小時后,恰有一輛郵政車從甲地出發(fā),沿自行車隊行進(jìn)路線前往丙地,在丙地完成2小時裝卸工作后按原路返回甲地,自行車隊與郵政車行駛速度均保持不變,并且郵政車行駛速度是自行車隊行駛速度的2.5倍,如圖表示自行車隊、郵政車離甲地的路程y(km)與自行車隊離開甲地時間x(h)的函數(shù)關(guān)系圖象,請根據(jù)圖象提供的信息解答下列各題:
(1)自行車隊行駛的速度是
 
km/h;
(2)郵政車出發(fā)多少小時與自行車隊首次相遇?
(3)郵政車在返程途中與自行車隊再次相遇時的地點(diǎn)距離甲地多遠(yuǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,AD⊥BC,垂足為D,點(diǎn)E在AB上,EF⊥BC,垂足為F.
(1)AD與EF平行嗎?為什么?
(2)如果∠1=∠2,且∠3=115°,求∠BAC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

小美周末來到公園,發(fā)現(xiàn)在公園一角有一種“守株待兔”游戲.游戲設(shè)計者提供了一只兔子和一個有A、B、C、D、E五個出入口的兔籠,而且籠內(nèi)的兔子從每個出入口走出兔籠的機(jī)會是均等的.規(guī)定:
①玩家只能將小兔從A、B兩個出入口放入;
②如果小兔進(jìn)入籠子后選擇從開始進(jìn)入的出入口離開,則可獲得一只價值5元小兔玩具,否則應(yīng)付費(fèi)3元.
(1)問小美得到小兔玩具的機(jī)會有多大?
(2)假設(shè)有100人次玩此游戲,估計游戲設(shè)計者可賺多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

計算:
(1)(x-1)(x2+x+1);                      
(2)(-2a+b)(-2a-b);
(3)(2a-3b)2-2(2a-3b)(a-b).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在△ABC中,AC=4,AB=5,D是AC邊上一點(diǎn),E是AB邊上一點(diǎn),∠ADE=∠B.若CD=x,AE=y,求y與x的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊答案