【題目】如圖,矩形中,,.將矩形沿折疊,使點(diǎn)落在邊中點(diǎn)處,點(diǎn)落在處.連接,以矩形對稱中心為圓心的圓與相切于點(diǎn),則圓的半徑為________.
【答案】
【解析】
連接OP、OM、AC,根據(jù)矩形的性質(zhì)、折疊的性質(zhì)和勾股定理即可求出EM=5,ED=4,然后根據(jù)三角形中位線的性質(zhì)和切線的性質(zhì)可得OM∥AD,OM=,∠OPM=∠D=90°,從而證出△OMP∽△MED,最后列出比例式即可求出結(jié)論.
解:連接OP、OM、AC
∵矩形中,,,點(diǎn)M為CD的中點(diǎn)
∴∠D=90°,CD=AB=6,AD=BC=9,DM=
由折疊的性質(zhì)可得AE=EM,設(shè)AE=EM=x,則ED=AD-AE=9-x
∵ED2+DM2=EM2
∴(9-x)2+32=x2
解得:x=5
∴EM=5,ED=4
∵以矩形對稱中心為圓心的圓與相切于點(diǎn),點(diǎn)M為CD的中點(diǎn)
∴AC必過點(diǎn)O且OM為△ACD的中位線,OP⊥EM
∴OM∥AD,OM=,∠OPM=∠D=90°
∴∠OMP=∠MED
∴△OMP∽△MED
∴
即
解得:
即圓的半徑為
故答案為:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O 為坐標(biāo)原點(diǎn),P是反比例函數(shù)圖象上任意一點(diǎn),以P為圓心,PO為半徑的圓與x軸交于點(diǎn) A、與y軸交于點(diǎn)B,連接AB.
(1)求證:P為線段AB的中點(diǎn);
(2)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知Rt△ABC中,∠ACB=90°,AC=,BC=16.點(diǎn)O在邊BC上,以O為圓心,OB為半徑的弧經(jīng)過點(diǎn)A.P是弧AB上的一個動點(diǎn).
(1)求半徑OB的長;
(2)如果點(diǎn)P是弧AB的中點(diǎn),聯(lián)結(jié)PC,求∠PCB的正切值;
(3)如果BA平分∠PBC,延長BP、CA交于點(diǎn)D,求線段DP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知y關(guān)于x的二次函數(shù)y=x-bx+b+b-5的圖象與x軸有兩個公共點(diǎn).
(1)求b的取值范圍;
(2)若b取滿足條件的最大整數(shù)值,當(dāng)m≤x≤時,函數(shù)y的取值范圍是n≤y≤6-2m,求m,n的值;
(3)若在自變量x的值滿足b≤x≤b+3的情況下,對應(yīng)函數(shù)y的最小值為,求此時二次函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1是一輛吊車的實(shí)物圖,圖2是其工作示意圖,是可以伸縮的起重臂,其轉(zhuǎn)動點(diǎn)離地面的高度為.當(dāng)起重臂長度為,張角為118°.
(1)求操作平臺離地面的高度;
(2)當(dāng)張角為120°,其它條件不變時,求操作平臺升高的高度.
(最后結(jié)果精確到0.1,參考數(shù)據(jù):,,,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線與軸交于、,交軸于點(diǎn).
(1)拋物線頂點(diǎn)的坐標(biāo)為________;
(2)如圖2,連接、.將沿軸方向以每秒1個單位長度的速度向右平移得到,運(yùn)動時間為秒.當(dāng)時,求與重疊面積與的函數(shù)解析式,并求出的最大值;
(3)如圖3中,將繞點(diǎn)順時針旋轉(zhuǎn)一定的角度得到,邊與拋物線的對稱軸交于點(diǎn).在旋轉(zhuǎn)過程中,是否存在一點(diǎn),使得?若存在,直接寫出所有滿足條件的點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交于點(diǎn),兩點(diǎn),直線與軸交于點(diǎn),與軸交于點(diǎn).點(diǎn)是軸上方的拋物線上一動點(diǎn),過點(diǎn)作軸于點(diǎn),交直線于點(diǎn).設(shè)點(diǎn)的橫坐標(biāo)為.
(1)求拋物線的解析式;
(2)若,求的值;
(3)若點(diǎn)是點(diǎn)關(guān)于直線OE的對稱點(diǎn),是否存在點(diǎn),使點(diǎn)落在上?若存在,請直接寫出相應(yīng)的點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BM是以AB為直徑的⊙O的切線,B為切點(diǎn),BC平分∠ABM,弦CD交AB于點(diǎn)E,DE=OE.
(1)求證:△ACB是等腰直角三角形;
(2)求證:OA2=OEDC:
(3)求tan∠ACD的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=90°,∠B=30°,以點(diǎn)O為圓心,OA為半徑作弧交AB于點(diǎn)C,交OB于點(diǎn)D,若OA=4,則陰影部分的面積為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com