如圖,已知拋物線的頂點(diǎn)為M(5,6),且經(jīng)過(guò)點(diǎn)C(-1,0).
(1)求拋物線的解析式;
(2)設(shè)拋物線與y軸交于點(diǎn)A,過(guò)A作AB∥x軸,交拋物線于另一點(diǎn)B,則拋物線上存在點(diǎn)P,使△ABP的面積等于△ABO的面積,請(qǐng)求出所有符合條件的點(diǎn)P的坐標(biāo);
(3)將拋物線向右平移,使拋物線經(jīng)過(guò)點(diǎn)(5,0),請(qǐng)直接答出曲線段CM(拋物線圖象的一部分,如圖中的粗線所示)在平移過(guò)程中所掃過(guò)的面積.

【答案】分析:(1)設(shè)拋物線的解析式為y=a(x-5)2+6,將C(-1,0)代入,利用待定系數(shù)法可得,則所求拋物線的解析式為;
(2)先根據(jù)函數(shù)解析式求得OA=,結(jié)合AB∥x軸,OA⊥AB的性質(zhì)可知點(diǎn)P到AB的距離為,設(shè)點(diǎn)P的坐標(biāo)為或(x,0),①將代入,解得
②將(x,0)代入,解得x3=-1,x4=11,綜合可知點(diǎn)P的坐標(biāo)為、、(-1,0)、(11,0).
(3)曲線段CM在平移過(guò)程中所掃過(guò)的面積可看作為底為6,高為6的平行四邊形的面積,故為36.
解答:解:(1)設(shè)拋物線的解析式為y=a(x-5)2+6(1分)
將C(-1,0)代入,
得0=a(-1-5)2+6,
解得(2分)
∴所求拋物線的解析式為(1分);

(2)∵當(dāng)x=0時(shí),y=
∴OA=(1分)
∵AB∥x軸,
∴OA⊥AB
∵S△ABO=S△ABP
∴點(diǎn)P到AB的距離為(2分)
∴設(shè)點(diǎn)P的坐標(biāo)為或(x,0)
代入
解得(2分)
將(x,0)代入,
解得x3=-1,x4=11(2分)
∴點(diǎn)P的坐標(biāo)為、、(-1,0)、(11,0)(1分);

(3)∵曲線段CM在平移過(guò)程中所掃過(guò)的面積可看作為底為6,高為6的平行四邊形的面積,
∴所掃過(guò)的面積為36.(2分)
點(diǎn)評(píng):本題考查二次函數(shù)的綜合應(yīng)用,其中涉及到的知識(shí)點(diǎn)有待定系數(shù)法求函數(shù)解析式和二次函數(shù)和方程之間的關(guān)系以及利用數(shù)形結(jié)合的方法求算幾何圖形的面積等.要熟練掌握才能靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖是拋物線拱橋,已知水位在AB位置時(shí),水面寬4
6
m
,水位上升3m,達(dá)到警戒線CD,這時(shí)水面寬4
3
m
.若洪水到來(lái)時(shí),水位以每小時(shí)0.25m的速度上升,求水過(guò)警戒線后幾小時(shí)淹到拱橋頂?
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在斜坡A處立一旗桿AB(旗桿與水平面垂直),一小球從斜坡O點(diǎn)拋出(如圖),小球擦旗桿頂B而過(guò),落地時(shí)撞擊斜坡的落點(diǎn)為C,已知A點(diǎn)與O點(diǎn)的距離為
5
2
米,旗桿AB高為3米,C點(diǎn)的垂精英家教網(wǎng)直高度為3.5米,C點(diǎn)與O點(diǎn)的水平距離為7米,以O(shè)為坐標(biāo)原點(diǎn),水平方向與豎直方向分別為x軸、y軸,建立直角坐標(biāo)系.
(1)求小球經(jīng)過(guò)的拋物線的解析式(小球的直徑忽略不計(jì));
(2)H為小球所能達(dá)到的最高點(diǎn),求OH與水平線Ox之間夾角的正切值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

在斜坡A處立一旗桿AB(旗桿與水平面垂直),一小球從斜坡O點(diǎn)拋出(如圖),小球擦旗桿頂B而過(guò),落地時(shí)撞擊斜坡的落點(diǎn)為C,已知A點(diǎn)與O點(diǎn)的距離為數(shù)學(xué)公式米,旗桿AB高為3米,C點(diǎn)的垂直高度為3.5米,C點(diǎn)與O點(diǎn)的水平距離為7米,以O(shè)為坐標(biāo)原點(diǎn),水平方向與豎直方向分別為x軸、y軸,建立直角坐標(biāo)系.
(1)求小球經(jīng)過(guò)的拋物線的解析式(小球的直徑忽略不計(jì));
(2)H為小球所能達(dá)到的最高點(diǎn),求OH與水平線Ox之間夾角的正切值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2001年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(02)(解析版) 題型:解答題

(2001•青海)在斜坡A處立一旗桿AB(旗桿與水平面垂直),一小球從斜坡O點(diǎn)拋出(如圖),小球擦旗桿頂B而過(guò),落地時(shí)撞擊斜坡的落點(diǎn)為C,已知A點(diǎn)與O點(diǎn)的距離為米,旗桿AB高為3米,C點(diǎn)的垂直高度為3.5米,C點(diǎn)與O點(diǎn)的水平距離為7米,以O(shè)為坐標(biāo)原點(diǎn),水平方向與豎直方向分別為x軸、y軸,建立直角坐標(biāo)系.
(1)求小球經(jīng)過(guò)的拋物線的解析式(小球的直徑忽略不計(jì));
(2)H為小球所能達(dá)到的最高點(diǎn),求OH與水平線Ox之間夾角的正切值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2001年青海省中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2001•青海)在斜坡A處立一旗桿AB(旗桿與水平面垂直),一小球從斜坡O點(diǎn)拋出(如圖),小球擦旗桿頂B而過(guò),落地時(shí)撞擊斜坡的落點(diǎn)為C,已知A點(diǎn)與O點(diǎn)的距離為米,旗桿AB高為3米,C點(diǎn)的垂直高度為3.5米,C點(diǎn)與O點(diǎn)的水平距離為7米,以O(shè)為坐標(biāo)原點(diǎn),水平方向與豎直方向分別為x軸、y軸,建立直角坐標(biāo)系.
(1)求小球經(jīng)過(guò)的拋物線的解析式(小球的直徑忽略不計(jì));
(2)H為小球所能達(dá)到的最高點(diǎn),求OH與水平線Ox之間夾角的正切值.

查看答案和解析>>

同步練習(xí)冊(cè)答案